Тенденции развития современной металлургии и новые процессы получения железа. Новейшие технологии в порошковой металлургии Новое в металлургии

Мартеновский процесс, долгое время державший монополию в области производства стали, уступил в конце 60-х годов XX века место более производительному кислородно-конвертерному. Дальнейшая борьба шла уже между конвертерным и набирающим силу электросталеплавильным процессом.

Динамика развития процессов производства стали

Растущий спрос на специальные виды сталей и развитие мини-миллов (небольших прокатных заводов, имеющих в составе электропечи) упрочил позиции этого способа производства стали. Развитие основных процессов производства стали с середины XX века представлено на диаграмме:

Доля мартеновского производства по итогам 2008 года в мире составляла 2,2%. Мартеновское производство сосредоточено в основном в странах СНГ (23,4% от общего производства стали по итогам 2008 года). В связи с закрытием избыточных и малоэффективных производств на фоне мирового финансового кризиса доля мартеновского производства по итогам 2009 года значительно сократилась. Так, на российских предприятиях о закрытии мартеновских цехов объявили Череповецкий МК (Северсталь) и Нижнетагильский МК (Евраз). Таким образом, по итогам 2010 года доля мартеновского производства составляла уже 14,3% в странах СНГ и 1,3% - в мире.

Соотношение между конвертерным и электросталеплавильным процессами в общем объеме производства стали в ближайшей перспективе сохранится: с одной стороны растет количество предприятий неполного цикла (мини-миллы) с использованием электрометаллургии, с другой стороны – ведущий мировой производитель стали Китай наращивает производство именно конвертерной стали (доля кислородно-конвертерной стали в КНР по итогам 2010 года составляет 90,2%).

Основные компоненты металлошихты для сталеплавильных процессов

Компонентами металлошихты для производства стали в общем случае являются чугун, лом черных металлов и металлизованное сырье (Direct Reduction Iron – DRI).

Металлошихта для основных сталеплавильных процессов может варьироваться в довольно широком диапазоне и зависит в большинстве случаев от доступности ресурсов и ценовых соотношений между ними. Так, в периоды роста стоимости железорудного сырья и снижения цен на лом чёрных металлов комбинаты увеличивают использование лома за счёт снижения чугуна и наоборот.

Общее представление о технологических диапазонах изменения сталеплавильной шихты можно получить из следующей таблицы:

Кислородно-конвертерное Электростале-плавильное Мартеновское (скрап-рудный процесс) Мартеновское (скрап процесс)

Кислородно-конвертерное

Электростале-плавильное

Мартеновское (скрап-рудный процесс)

Мартеновское (скрап процесс)

Доля процесса в выплавке стали (мир)

6 9,8 %

29,0 %

1,2 %

Доля процесса в выплавке стали (СНГ)

6 4 ,6 %

2 1,1 %

1 4 ,3 %

Типовая шихта, %:

- жидкий чугун

75-80

0-30

25-55

- лом черных металлов

20-25

30-100

25-75

- чугун чушковый

0-5

5-15

- металлизованное сырье

0-70

Максимальная доля лома в металлошихте (технологическое ограничение)

28%

100%

45%

75%

Заменители лома

чугун жидкий*

чугун жидкий*

чугун жидкий*

чугун чушковый

чугун чушковый*

чугун чушковый*

чугун чушковый*

Примечание:

* – ограниченное применение

Наибольшая вариативность металлошихты наблюдается в электросталеплавильном производстве. Источником тепла в ЭСП является энергия электрической дуги и необходимость в других теплоносителях отсутствует, что снимает потребность в приходе тепла от компонентов шихты.

Как уже говорилось выше, мартеновский процесс ввиду его незначительной доли в мировом производстве не играет значительной роли в потреблении металлосырья. Таким образом, в общем виде схема классического производства стали выглядит следующим образом:

Преимущества классической схемы:

  • высокая степень извлечения железа;
  • высокая удельная производительность;
  • высокий тепловой КПД;
  • эффективный расход энергоресурсов.

Недостатки классической схемы:

  • высокие стартовые капитальные затраты при строительстве нового производства;
  • необходимость предварительного окускования шихты;
  • использование кокса в качестве основного энергоносителя и восстановителя;
  • ограниченные ресурсы качественного лома черных металлов.

Новые процессы получения железа

Основные причины возникновения новых процессов получения железа вытекают из недостатков классической схемы: стремление сократить технологическую цепочку и снизить зависимость от использования кокса – основного восстановителя и источника тепла в классической схеме производства стали. Как следствие – в обозначении новых процессов часто используются термины «прямое получение железа» и «бескоксовая металлургия».

По виду производимого полупродукта новые процессы получения железа разделяют на твердофазные и жидкофазные. Доля последних крайне мала (5-6% от всей бескоксовой металлургии) и их полупродукт не может выступать в составе металлошихты в качестве полновесной альтернативы лому.

Исходным сырьём для новых процессов являются железная руда или железорудные окатыши. Таким образом, стадия восстановления (перевод железа из окисленной формы в металлическую) также присутствует и в процессах альтернативной металлургии.

В качестве восстановителя в твердофазных процессах используют продукты конверсии (перевода в CO и H2) природного газа или продукты газификации углей. Вследствие относительно низкой эффективности применение газификации углей ограничено. В последнее время процессы, связанные с газификацией углей, наиболее активно развиваются в Индии.

В жидкофазных процессах основным восстановителем и источником тепла является уголь.

Схема производства стали из металлизованного полупродукта приведена ниже:

Многообразие идей и схем реализации породило множество названий для процессов и продуктов бескоксовой металлургии. Перечислим наиболее употребимые из них:

  • DRI – Direct Reduced Iron
  • SI, SPI – Sponge Iron
  • HBI – Hot Briquetted Iron
  • HDRI – Hot Direct Reduced Iron
  • CDRI – Cold Direct Reduced Iron
  • МП – металлизованный полупродукт
  • ЖПВ – железо прямого восстановления
  • ЖПП – железо прямого получения
  • ПВЖ – прямовосстановленное железо
  • ГЖ – губчатое железо
  • ГБЖ – горячебрикетированное железо
  • Наиболее часто встречающиеся:
  • DRI – процессы и продукты производства «бескоксовой» металлургии
  • SI, SPI (ГЖ) – продукт твердофазных процессов
  • HBI (ГБЖ) – брикетированный продукт твердофазных процессов

В общем виде схема производства металлизованного продукта приведена ниже:

Классификация новых процессов производства железа

По виду используемого восстановителя новые процессы классифицируются по следующим группам:

I. Природный газ

  • шахтная установка непрерывного действия (Midrex, Armco, Purofer, HYL-III);
  • шахтная установка периодического действия – реторта (HYL-I, HYL-II);
  • агрегат с кипящим слоем.

II. Природный газ + уголь

  • вращающаяся трубчатая печь, шахтная установка (ITmk3).
  • одностадийные (Romelt);
  • многостадийные (Corex, Finex, Hismelt, DIOS).

Для процессов I и II групп характерен твёрдый металлизованный продукт, процессы III группы производят жидкий полупродукт. Как уже говорилось выше, распространённость процессов III группы очень ограничена (5...6%), поэтому дальнейшее изложение будет касаться аспектов производства и использования твёрдых металлизованных продуктов.

Развитие технологий производства металлизованного полупродукта

Развитие процессов прямого восстановления идёт параллельно в двух направлениях: с одной стороны увеличивается количество реализованных проектов по технологии Midrex с использованием природного газа в качестве источника восстановителей, с другой стороны – развиваются процессы, основанные на конверсии углей. Наиболее популярна эта технология в Индии – государстве со значительными запасами железной руды и угля и с одним из самых незначительных удельных объёмов потребления стали (51 кг/человека), что делает её перспективной в отношении развития металлургического сектора.

Развитие процессов прямого восстановления железа (% от общего объёма производства DRI)

2005 2010


Особенности производства твёрдого металлизированного продукта

Технологическая схема производства металлизованного продукта предъявляет определённые требования и накладывает некоторые ограничения на используемое сырье:

Процесс металлизации проводится в агрегатах с противотоком твёрдых материалов и газов.

Необходимость окускования исходных материалов для улучшения газопроницаемости шихты.

Причина

Следствие

Восстановление происходит в твёрдом виде без образования жидких продуктов плавки и отделения пустой породы в виде шлака.

Ограничение по содержанию пустой породы в исходном материале. Для производства DRI требуется высококачественное кусковое железорудное сырьё с минимальным содержанием пустой породы.

Восстановление происходит в твёрдом виде, т.е. проходит без удаления примесей.

Ограничение по содержанию нежелательных примесей в исходном материале. Природное сырье должно содержать минимум примесей и нежелательных элементов.

Отсутствие крупнокусковых разрыхлителей в агрегате металлизации.

Необходимость обеспечения нормального газодинамического режима ведёт к необходимости снижения диаметра агрегатов. Негативным результатом этого является снижение удельной производительности агрегатов.

Продуктом является пористое свежевосстановленное железо, находящееся в восстановительной среде внутри агрегата металлизации.

Возникают условия для сваривания частиц материала внутри агрегата. Для снижения эффекта необходимо снижение температурного уровня процесса, что приводит к снижению удельной производительности.

Продуктом является пористое свежевосстановленное железо, находящееся в окислительной среде вне агрегата металлизации.

Высокая площадь контакта с кислородом воздуха в малом объёме приводит к пирофорности – возможности самовоспламенения. Для снижения этого негативного эффекта необходима пассивация: обработка нейтральными веществами, хранение и перевозка в нейтральной среде, брикетирование.

Таким образом, основными недостатками новых процессов производства железа являются:

  • низкая удельная производительность агрегатов;
  • необходимость использования шихты с высоким содержанием железа и низким содержанием пустой породы и примесных элементов;
  • высокая потребность в энергоносителях и кислороде;
  • высокие требования к условиям хранения и транспортировки.

Страны-производители DRI

Условия целесообразности строительства установок по производству DRI:

  • относительно малая потребность внутреннего рынка в стали;
  • малые ресурсы металлического лома и коксующихся углей;
  • значительные ресурсы железной руды и природного газа.

Установки внедоменного получения железа сооружаются, в основном, в развивающихся странах, которые отвечают перечисленным выше условиям: Индия, Венесуэла, Иран, Мексика, Саудовская Аравия. Динамика производства DRI в разбивке по странам приведена на диаграммах.

Стоимость greenfield-проекта по производству DRI в объёме 2 млн. т в год оценивается в $350...$500 млн. Основные параметры проекта:

Качество металлизованного сырья, новый металлизованный продукт - HBI

Производимые DRI отличаются высокими качественными характеристиками:

Выше отмечалось, что губчатое железо ввиду большой площади поверхности склонно к пирофорности в результате окисления на открытом воздухе. Даже если не происходит самовозгорания, то в результате окисления активного свежевосстановленного железа происходит снижение содержания железа и потеря металлургической ценности DRI. Динамика изменения содержание Fe в губчатом железе, хранящемся на открытом воздухе, приведена на диаграмме.

Для снижения пирофорности и улучшения насыпных и утилизационных характеристик DRI применяют технологию брикетирования в горячем состоянии. В результате брикетирования улучшаются физические (насыпной вес), логистические (хранение, транспортировка) и технологические (удобство использования в электропечах) характеристики DRI. Характеристики брикета:

Размер брикета, мм

Насыпная масса, т/м 3

Эффекты брикетирования:

  • увеличение насыпного веса в 1,3...1,8 раза;
  • увеличение плотности в 1,4...1,6 раза;
  • снижение химической активности (пирофорности) на порядок;
  • удобство использования в ДСП (снижение времени загрузки, расположение на границе шлак-металл).

Мировое производство и перевозки металлизованного полупродукта

Динамика производства DRI с 1970 г. приведена на диаграмме.

Мировое производство DR




Преимущества и недостатки использования DRI в EAF

Основным потребителем DRI является электросталеплавильное производство – доля DRI в металлошихте может достигать 70%. При этом DRI обладает определёнными преимуществами относительно других компонентов шихты:

  • стабильность химсостава;
  • низкое содержание нежелательных примесей (сера, фосфор);
  • отсутствие сопутствующих элементов (свинец, медь);
  • простота хранения, погрузки/выгрузки, транспортировки;
  • высокая насыпная плотность;
  • возможность подачи в электропечь без остановки процесса плавления;
  • габаритное сырье гарантирует сохранность электродов от механических повреждений.

Но использование DRI в электропечах имеет свои недостатки:

  • увеличение расхода электроэнергии (каждые 10% DRI: +15 кВт ч/т стали);
  • увеличение удельного расхода электродов (каждые 10% DRI: +0,2 кг/т стали);
  • снижение выхода годного (каждые 10% DRI: –0,4 % объёма производства);
  • увеличение времени плавки и снижение производительности (каждые 10% DRI: +2,5 минуты);
  • увеличение тепловой нагрузки на футеровку в начале процесса.

Эти особенности применения DRI в качестве компонента шихты электрометаллургического производства находят отражение в стоимости DRI.

Справедливая цена DRI

При замещении 30% лома на DRI с аналогичной стоимостью удельные затраты при производстве стали растут на $8/т (см. диаграмму).

Для выполнения условия равенства затрат на 1 т выплавляемой стали цена DRI должна быть меньше цены высококачественного лома на 7%.

Эта оценка подтверждается фактическими данными – исторически цена DRI ниже цены металлолома в среднем на 5% (максимальное отклонение -13%):


Следует отметить, что DRI является прямой альтернативой только для высококачественного лома сравнимого качества и типоразмера. При отсутствии достаточного количества высококачественного лома производство стали сравнимого качества возможно только при условии вовлечения металлизованного сырья.

Мировой кризис негативно отразился на экономике России, но металлургическая промышленность сохранила свои возможности благодаря предшествующим крупным денежным вкладам. Металлургия – это основная отрасль государственной промышленности, своеобразный фундамент для развития экономики в целом.

В общем экспорте страны доля металлургии составляет 14%. Экспортируется более 40 % стали, выплавляемой в РФ. Продукция металлургов в ВВП составляет 5 %, во всем промышленном комплексе – 17%. Металлургическая отрасль вносит существенный вклад в экономику страны и наполняет бюджет. В связи с неблагоприятной экономической обстановкой принят также план по замещению импортной продукции на отечественную. Повышение конкурентной способности отрасли входит в стратегические планы государственного уровня. Предприятия отрасли модернизируются и применяют .

Востребованные инновации касаются обновления технологий, снижения ресурсоёмкости, улучшения экологической составляющей в металлургии. Особый упор делается на продукцию электродную, углеграфитовую, твёрдосплавную, полупроводниковую, прокатную. Чтобы избежать упадка в металлургической промышленности, необходимо активизировать инновационную деятельность. Научно-исследовательские учреждения оказывают существенную помощь в модернизации отрасли.

10 инноваций в металлургии 2018

Инновации в металлургии:

  1. Карусельная печь. Задействована в чёрной металлургии, снижает напряжение в подовой части печи.
  2. Спроектирован и введён в эксплуатацию печи Ванюкова для переработки шлаков и отходов в цветной металлургии. Аналог этой инновации – печь Ромелт, задействованная в чёрной металлургии. Преимущество её – возможность работы на низкосортном угле и переработка шлакоотходов. Хотя КПД такой печи ниже, чем у доменной, последняя не способна перерабатывать отходы и шлаки. Это большой рывок вперёд, ведь металлургические комбинаты завалены отходами, которые некуда девать. Стоимость проекта около 250 млн рублей, а строительство вне металлургического комбината будет стоить миллиард рублей. Инновация осуществлена за счёт частных инвестиций.
  3. Предприятие «Челябинский цинковый завод» осваивает флотационную технологию получения серебра из кеков цинкового производства. Инновационная технология даёт до 98 кг серебра из 100 килограммов сульфидного флотоконцентрата.
  4. Создана мембранная технология очистки сложных растворов в металлургии. Инновация позволяет очищать растворы от сульфатов тяжёлых цветных металлов на 99%. Новшество открывает возможность создания закольцованного водооборота на заводах отрасли.
  5. При плавке чугуна и стали используют синтетический легкоплавкий флюс. Инновация помогает увеличить способность шлаков к рафинированию.
  6. Динамический нанотестер. С помощью изобретения исследуют физико-механические параметры материалов разного происхождения, определяют коэффициент трения, модуль
    Юнга, нанотвёрдость и др.
  7. Комплекс для исследования и диагностики сыпучих нановеществ (нанотрубки, порошки для спекания и катализа, медпрепараты). Инновация предназначена для быстрого определения свойств и характеристик материала на разных этапах производства.
  8. Инновации касаются также водоснабжения производств чёрной металлургии. Для расчёта концентраций соли в подразделах, оптимизации структуры систем водоснабжения
    разработана технологическая модель с её математическим описанием.
  9. Индукционная плавильная установка ТВЧ Элсит позволяет экономить электроэнергию. Благодаря высокой мощности печь моментально нагревается и позволяет сразу
    плавить металл.
  10. Плоское прокатное оборудование для поперечно-клиновой прокатки заготовок применяют в изготовлении высокоточных деталей сложной конфигурации. Автоматизированный комплекс позволяет повысить производительность в 2 раза, уменьшить на 30% расход металлопроката, повысить точность изготовления и снизить трудоёмкость дальнейших операций.

Развитие металлургической промышленности закономерно входит в стратегическое планирование федерального уровня. Использование инноваций в металлургии, внедрение современной техники, модернизация действующей увеличивают коэффициент обновления основных производственных фондов до 5%. В перспективе, к 2020 году металлургическая промышленность выйдет на мировой уровень по количеству произведенной продукции.

Чёрная металлургия

Инновации в чёрной металлургии задействованы в отдельных направлениях производства:

  1. Доменном.
    Предусмотрено строительство установок по вдуванию угольной пыли, увеличение выплавки чугуна до 20% и уменьшением расхода природного газа.
  2. Сталеплавильном.
    Отказ от использования мартеновских печей для производства стали, уменьшение расхода металлопроката до 1088 кг/т в 2020 году с нынешних 1142
    кг/т. Использование сверхмощных печей для экономии электроэнергии(350 кВт*ч /т в сравнении с нынешними 500 кВт*ч/т).
  3. Прокатном.
    Увеличение выпуска листового металла в общем выпуске металла до 65%, доведение до уровня экономически развитых стран.
  4. Цветная металлургия
    Темп роста отрасли вызван необходимостью заместить импорт отечественной продукцией. Быстрый рост требует инновационного подхода к технологии, технике и организации производства. Нестабильность внешнего рынка и недостаточная ёмкость отечественного требуют развития последнего.

Главенствующими вопросами цветной металлургии являются: возрастание части выпуска алюминия в электролизерах и наращивание мощностей в производстве тяжёлых цветных металлов по технологии автогенных процессов. До конечного срока «Стратегии развития чёрной и цветной металлургии России на 2014-2020 годы» их часть должна составить 97% от общего производства.

Комбинат «Североникель»

Предприятие с давней историей, с 1998 года комбинат «Североникель» входит в состав АО «Кольская ГКМ». Сейчас на нём перерабатывается файнштейн и завершается производственный цикл.

«Норникель» инвестировал в обновление производства никеля Кольской ГМК более 20 млрд рублей. Планируется освоить новую технологию электроэкстракции для рафинирования никеля. Никелевые аноды не будут плавить, так как сырьём выступит никелевый порошок. Постепенно старые ванны для электролиза заменят новыми. Всего планируется постепенно заменить 476 ванн в цехе электролиза.

Кольская горно-металлургическая компания модернизирует обогатительную фабрику. Усовершенствования касаются АСУ ТП. Комплекс замещается новым, поскольку прекращено производство запасных комплектующих и возможны аварийные ситуации. Новое оборудование устанавливают поэтапно. Уже произведена замена на пульпонасосной станции, сейчас модернизируются 3 секции флотации. За 2018 год будет заменён весь аппаратный комплекс предприятия.

Предприятие планирует модернизировать всю систему управления до начала 2019 года и соединить в одну централизованную систему управления обогатительной фабрики СУ отдельных производственных участков. Это позволит далее совершенствовать технологический процесс, проявлять гибкость при смене технологических циклов.

Комбинат «Североникель» осваивает новый способ переработки платинорениевых катализаторов, результатом которой является концентрат платины и перренат аммония.

Для предприятия разрабатывается технологическая линия очистки стоковых вод до приемлемого уровня.

На сегодняшний день почти каждая отрасль промышленности, так или иначе, потребляет стали и сплавы на их основе. В этой связи черная металлургия является одной из ключевых в промышленности, ее инновационное развитие стимулирует развитие в таких отраслях, как: машиностроение, строительство, мостостроение, судостроение и т.д.

В состав черной металлургии входят следующие основные подотрасли:

Добыча и обогащение руд черных металлов;

Добыча и обогащение нерудного сырья для черной металлургии (флюсовых известняков, огнеупорных глин, добавочных материалов и т. п.);

Производство черных металлов (чугуна, сталей и сплавов, проката, металлических порошков черных металлов); - производство стальных и чугунных труб;

Коксохимическая промышленность;

Вторичная переработка черных металлов (лома и отходов).

В последнее время в развитии черной металлургии наблюдаются негативные тенденции. Развитие общемировой отрасли черной металлургии до настоящего времени во многом было обусловлено интенсивным развитием экономики Китая. На фоне замедления развития экономики за период с 2012 по 2014 годы наблюдалось стагнация развития мировой отрасли черной металлургии. Если данная тенденция сохранится, то возникнет проблема глобального уровня, связанная со снижением темпов развития мировой черной металлургии.

Как же бороться с негативными тенденциями в черной металлургии, как повысить конкурентоспособность данного конкретного сталелитейного предприятия?

Дерево эволюции.

Основным видом производственной деятельности предприятий черной металлургии является производство металла, остальные виды деятельности можно отнести к вспомогательным. Прежде всего, давайте рассмотрим, какую продукцию производят предприятия черной металлургии, для чего построим дерево эволюции выпускаемой продукции (рис. 1).

Самый простой и дешевый продукт - это сляб, огромный кусок стали, который требует дальнейшей обработки перед отправкой потребителю.

Какие тенденции развития просматриваются здесь?

Прежде всего - дробление одного большого куска металла на несколько более мелких частей. При этом толстые и более тонкие листы металла, полоса, рулонная лента и фольга. То есть, мы здесь наблюдаем дробление материала при сохранении его формы, разделение сляба по его толщине.

Дробление сляба может быть выполнено путем разделения его по ширине. В таком случае мы получаем квадратный профиль, что-то вроде толстых металлических стержней. Следующий шаг - разделение на большее количество частей, получение прутков, толстой и тонкой проволоки.

Рис.1. Дерево эволюции сталелитейной продукции (исходный вариант)

Финальным шагом по линии дробления будет жидкий металл, то есть расплав, который без дальнейшей переработки используется для изготовления нужных деталей путем литья в формы.

Это основная часть, ствол дерева продукции черной металлургии.

Линии эволюции можно проследить практически для каждого из вариантов производимой продукции.

Так, для полосы можно построить линию геометрической эволюции , описывающую усложнение формы полосы и получение новых геометрических структур (рис.2). Это структуры, которые могут быть получены простым сгибанием: уголок, швеллер, различные желоба и S-образные профили и другие изделия, имеющие в сечении самый разный профиль. Развитием этого направления могут служить замкнутые структуры: квадратные и круглые трубы, трубы со сложным профилем в сечении и т.п. Следующий этап развития плоской полосы - это трехмерные оболочковые конструкции, из которых могут быть получены самые различные изделия, например, колена для трубопроводов, тройники, корпуса запорной и регулирующей арматуры и т.п.

Рис.2. Геометрическая эволюция изделий из листовой стали

Следующая линия - моно-би-поли (рис.3). Если посмотреть на главный и основной продукт черной металлургии - сляб, то можно заметить, что при его производстве получаются дополнительные продукты, которые могут быть использованы как товар. Это, прежде всего, шлак. При производстве тонны стали получается около ХХХ килограмм шлака, который может быть использован для самых разных целей. Кроме того, получается большое количество воды, которая широко используется в производственном процессе для охлаждения обрабатываемого металла. Сбросовые воды имеют высокую температуру и несут в себе прибавочную стоимость, которая может быть использована для получения прибыли. То есть, здесь мы видим линию развития моно-би-поли различных компонентов, согласно которой можно проследить развертывание количества полезных продуктов, получаемых при производстве стали.

Рис.3. Моно-би-поли полезных продуктов при производстве стали

Еще одну линию, эволюция внутренней структуры , можно построить, если рассмотреть микроструктуру производимой стали. Это зерна кристаллов, как правило, разных размеров, расположенные хаотично в толще материала (рис.4).

Один из вариантов этой линии показывает упорядочивание размеров и расположения зерен микрокристаллов. Такое упорядочивание может происходить в двух направлениях - как в сторону равномерного, изотропного, распределения атомов вещества, так и в сторону повышения анизотропии материала, когда кристаллы распределяются в определенном порядке, а их форма повышает механическую прочность стали.

Изотропная, так называемая «стеклянная», сталь имеет аморфную структуру. В отличие от стандартных металлов, где атомы находятся в определенном порядке, в твердых аморфных веществах, к примеру, стекле, атомы размещаются хаотично. Такое расположение атомов дает «стеклянной стали» необыкновенную прочность при любых нагрузках.

Рис.4. Эволюция внутренней структуры стали

Другое направление структуризации заключается в упорядочивании кристаллов стали. Например, аустенитные стали имеют не только более упорядоченную микроструктуру, но и сохраняют ее неизменной в большом диапазоне температур, что придает аустенитной стали особые прочностные и антикоррозионные свойства.

Это направление развивается в сторону дополнительного ориентирования микрокристаллов, то есть в придании материалу свойства анизотропии. Так в стали для формования лопаток турбин самолетных двигателей предусмотрено ориентирование продолговатых кристаллов вдоль некоторой оси. Такая сталь, как любой анизотропный материал, исключительно хорошо работает при определенных нагрузках, например, при изгибе и растяжении вдоль оси ориентации кристаллов.

Наиболее подходящая структура для лопаток турбин - это монокристалл, то есть когда вся лопатка представляет собой молекулярную структуру с кристаллической решеткой.

На рисунке 5 представлены различные варианты лопаток: из обычной стали, с продольно ориентированными кристаллами и монокристаллическая. Очевидно, что лопатка с ориентированными кристаллами и монокристаллическая имеют гораздо большую прочность по сравнению с обычной.

Рис. 5. Лопатки турбины

Еще одно направление структуризации стальных изделий заключается в том, что материалу придают разные свойства в его глубине и слое, приближенном к поверхности. Для этого применяются разные способы: закалка, науглероживание поверхностного слоя, механический наклёп и т.п. Упрочненная сталь, мягкая внутри, имеет высокую твердость поверхностных слоёв.

Обратный пример - режущий элемент экскаваторного ковша выполняют так, что внутри расположена твердая сталь, а по бокам - более мягкая. Такой зуб, выполненный по образцу резцов бобра, имеет свойство самозатачиваться (рис.6).

Рис.6. Самозатачивающийся зуб

Что касается листовой стали, то структуризация материала происходит путем добавления слоев. Здесь прослеживается линия моно-би-поли различных компонентов , которая заключается, прежде всего, в том, что на поверхность листа наносят различные покрытия (рис.7). Самое простое покрытие - это воронение поверхности листа или иной детали, при котором на поверхности стали образуется слой окислов железа.

Рис.7. Моно-би-поли слоёв покрытия

Наиболее распространенное покрытие - слой цинка, который создает преграду коррозии. Слой цинка может быть модифицирован, прежде всего, добавкой магния и алюминия, что значительно повышает его антикоррозионные свойства.

Вдобавок к нанесению покрытия слой цинка часто пассивируется, то есть, на его поверхности формируется дополнительный защитный слой из пленки оксидов, получаемых при действии окислителей на основе хрома. Этот процесс называется хроматированием.

Рис.8. Многослойный оцинкованный лист с полимерным покрытием

В дополнение к металлическим на лист наносятся и полимерные покрытия. Так для производства металлочерепицы и профилированного листа на цинковое покрытие наносят последовательно слой грунта, полимерный слой и покрывают многослойный лист специальным защитным лаком.

Такой многослойный лист находит большой спрос при строительных работах и изготовлении конструкций, работающих в агрессивной среде.

При производстве металлических изделий активно преобразуется такой атрибут, как их поверхность. Например, при производстве строительной арматуры можно проследить линию эволюция поверхности (рис.9). Винтовые нарезки, ортогональные выступы, наклонные выступы, звездочки, чередование выступов и впадин - различная форма поверхности дает возможность выбрать самый подходящий тип арматуры.

Рис.9. Эволюция поверхности прутка (на примере арматуры)

Конечно, мы не охватили в нашем дереве всё разнообразие выпускаемых металлургическими комбинатами стальных изделий. Это далеко выходит за рамки данной статьи. Но давайте попробуем провести простой анализ нашего дерева и поискать интересные направления развития сталелитейной промышленности.

Получается следующее:

  • Металлургические комбинаты выпускают изделия давно устоявшейся номенклатуры, которые, тем не менее, находят спрос у потребителя.
  • В тоже время ведется выпуск и новых, инновационных изделий, спрос на которые еще не сформировался полностью, и находится в режиме ожидания.

Традиционная продукция.

Если говорить о выпуске привычных, стандартных изделий, то здесь стоит две задачи - снижение затрат на производство единицы продукции и повышение качества выпускаемой продукции. Как первая, так и вторая проблема требуют решения большого количества изобретательских задач, создания инновационных технологических процессов. Здесь открывается широкое поле деятельности для специалистов по решению изобретательских задач на основе методик ТРИЗ.

В этой связи интересен опыт южнокорейской металлургической компании ПОСКО. 4-я в мире компания-производитель стали начала применять ТРИЗ в 2006 году. Была сформирована команда специалистов, имеющих опыт решения изобретательских задач. В течение нескольких лет команда показала принципиальную возможность и высокую результативность решения неразрешимых на первый взгляд задач в области металлургии.

Это были задачи, связанные со следующими процессами:

  • Устранение проблем при выплавке стали и повышение надежности технологического процесса.
  • Повышение качества проката при непрерывной разливке стали.
  • Производство проката, в первую очередь тонколистового, соединение заготовок, устранение проблем с охлаждением и деформацией листа.
  • Хранение и транспортировка руды и угля.
  • Утилизация и переработка шлака.
  • Разработка новых продуктов, прогнозирование развития технологий.

Только в 2010 году использование ТРИЗ принесло компании ПОСКО 277 млн. долларов США. Для примера, в 2010 было получено в 2,4 раза больше патентов, чем в 2009.

На основе накопленного опыта ПОСКО создала методологию разработки новой продукции и снижения затрат «PRIZM», основанную на ТРИЗ. В компании был организован корпоративный университет ТРИЗ, где прошли обучение 1800 сотрудников (10% всей численности).

Именно ТРИЗ выбрана в качестве основного инструмента для осуществления новой инновационной концепции POSCO 3.0.

Как выразился СЕО компании:

“TRIZ is a tool that allows you to leap forward to become a true global leader, and the POSCO Family is also gathering its efforts to fully utilize TRIZ since last year.”

Повседневная инновационная работа, основанная на ТРИЗ, позволяет устранить актуальные технологические проблемы. Что еще важнее, именно систематизация изобретательства дает возможность выявить скрытые проблемы компании, решение которых позволяет повысить качество продукции, поднять производительность и снизить затраты на производство.

Инновационная продукция.

Выпуск новой, инновационной продукции, прежде всего, предусматривает новые рынки сбыта. Глобальной проблемой сейчас можно считать переизбыток производственных мощностей в мировой черной металлургии, что до предела обостряет конкурентную борьбу за потребителя. Успеха в конкуренции можно достичь, увеличивая долю производства стальной продукции глубокой степени переработки (высших переделов). Успех будет иметь компания, которая не только спрогнозирует новые рынки сбыта, но и будет активно работать над их созданием.

Давайте проанализируем дерево эволюции и посмотрим, какие направления развития продукции черной металлургии оно показывает.

Одно из направлений развития получается, если продолжить линию структуризации материала. Развивая технологию направленной кристаллизации можно предположить, что управление ориентированием и формой кристаллов стали даёт новые возможности для повышения прочности и снижения массы стальных деталей. Технология, применяемая для создания лопаток турбин, может и должна быть распространена на другие виды инновационной продукции. Это позволить снизить материалоемкость изделий при повышении их надежности.

Еще одно направление - производство специальных сталей для интенсивно развивающихся отраслей промышленности.

Например, сейчас в мире активно развивается солнечная и ветровая энергетика. Можно предвидеть повышенный спрос на материалы, применяемые для производства солнечных батарей и ветродвигателей. Конечно, это могут быть сравнительно простые конструкционные стали, но этого однозначно недостаточно для обеспечения устойчивого сбыта. Гораздо больший эффект может дать применение продукции черной металлургии для создания самих солнечных батарей или ветродвигателей. Замена дефицитных и дорогих материалов сталями и сплавами позволяет не только найти новые рынки сбыта, но и удешевить сами изделия. Это, в свою очередь, даёт дополнительное расширение рынков.

Батареи из аморфного кремния производят напылением множества тончайших слоев материала на гибкую основу, обычно стальную ленту-фольгу. Потом её режут на отдельные фотоэлементы, выводят электроды и далее, готовые фотоэлементы спаивают в батарею и ламинируют с двух сторон гибкими пластиковыми пленками. Готовое изделие легко гнется и не боится ударов (рис.10).

Рис.10. Гибкая солнечная батарея на основе стальной фольги

Ряд компаний уже сейчас активно работает над созданием и усовершенствованием солнечных батарей на основе стальной фольги. Это та же корейские компании САМСУНГ, LG, SK. Интересно, что к разработке солнечных батарей на стальной основе активно подключилась и сталелитейная компания ПОСКО. Казалось бы, разработка батарей лежит в стороне от главной деятельности компании, но широкое внедрение в их конструкцию стали открывает дополнительный рынок сбыта для продукции.

Развитие солнечной энергетики открывает широкий спектр возможностей для продукции черной металлургии. Мы уже говорили о замене в солнечных батареях дефицитных и дорогих металлов сталями и сплавами. Еще одно перспективное направление - создание солнечных термальных электростанций (гелиоконцентраторов). Такая станция представляет собой колонну с емкостью, в которой находится трубка-коллектор с жидким теплоносителем (дистиллированная вода, масло или солевой расплав). Колонна окружена большим количеством зеркал, которые концентрируют солнечный свет на емкости, нагревая находящееся там вещество до высокой температуры. В линии фокуса параболы под воздействием отраженных лучей коллектор нагревается до 350 - 700°С, а теплоноситель «смывает» тепловую энергию с его стенок на теплообменник ТЭС или в тепловой аккумулятор (рис.11).

Здесь просматривается возможность изготовления зеркал из стальных пластин с полированной поверхностью. Солнечные термальные станции уже достаточно эффективны, и изготовление элементов их конструкций может стать новым рынком для сталелитейных компаний.

Рис.11. Гелиотермальная электростанция

Дерево эволюции показывает, что повышение спроса на продукцию черной металлургии может быть обеспечено повышением согласования номенклатуры выпускаемой продукции с запросами конечных потребителей. Например, для кораблестроительных компаний можно поставлять плоские стальные листы, а можно, по согласованию с формой будущего корабля, сразу формовать панели, которые останется только приварить по месту. Сейчас, в эпоху компьютеризации конструкторской работы, формовку криволинейных панелей корпуса корабля гораздо проще сделать на сталелитейной компании, чем разрабатывать для этого дополнительную технологию. То есть, речь идет о максимально полной переработке исходного сырья, что позволит компании получить дополнительную прибыль.

Здесь может возникнуть вопрос: самое дорогое при прессовании - это изготовление пресс-форм. А для изготовления различных изделий требуются детали самой разной формы, так что, металлургическая компания должна иметь бесконечное множество пресс-форм?

Это задача, изобретательская задача, которая может быть поставлена и решена при помощи методик ТРИЗ.

Если посмотреть линии структуризации материала и моно-би-поли слоев металла, можно сделать следующий вывод. Потребители продукции черной металлургии все активнее используют структурированные материалы, проблема заключается лишь в сложности их получения.

Здесь можно использовать такую технологию, как сварка взрывом, которая дает возможность соединять на молекулярном уровне самые разные материалы: сталь и медь, сталь и алюминий и т.п., получая структурированный материал с уникальными свойствами (рис.12).

Рис.12. Сварка взрывом

Сварка взрывом - очень эффективный способ обработки металла, эта технология хорошо проработана для соединения плоских листов. Применительно к черной металлургии просматривается возможность применение сварки взрывом для получения объемных деталей со сложной структурой. При этом дополнительные слои материала могут размещаться как на внешней стороне детали, так и в ее полостях. Например, таким образом можно изготавливать двух или многослойные трубопроводы для перекачки агрессивных жидкостей, детали из дешевого алюминиевого сплава, покрытые высокопрочной сталью, стальные электрические проводники с медным наружным слоем и т.п.

Компания, которая хочет получить прибыль, должна исследовать рынок и прорабатывать потенциальные возможности замены существующей продукции, особенно цветных металлов, сталями и их сплавами. Например, на изготовление тех же проводников тратится гигантское количество дефицитной меди. А ведь делать сплошной медный проводник нет никакого смысла - ведь ток идет только по его поверхностному слою. Если же заместить хотя бы часть рынка сплошных медных проводников стальными проводниками с медным покрытием, это даст огромный рынок сбыта продукции металлургических компаний.

Кроме более агрессивного выхода на уже существующие рынки сбыта, сталелитейная компания должна отслеживать появление новых перспективных технологий и понимать тенденции их развития. Так, одно из перспективных направлений развития черной металлургии - порошковая металлургия. Производство порошков для формования деталей - важный рынок сбыта. Однако недостаточно только следовать запросам рынка при производстве и продаже порошков. Металлургическая компания может активно влиять на развитие этого рынка, если будет вкладываться в совершенствование этой технологии. Увеличения прибылей сталелитейной компании можно ожидать, если объединить в ее рамках, как изготовление порошков, так и производство деталей из них, поставляя на рынок сразу готовые изделия. Конечно, это предполагает более тесное согласование с потребителями конечной продукции и непосредственное участие в разработке новых технологий.

Еще одно направление, которое активно развивается в последнее время, это трёхмерная печать готовых деталей. З-D принтеры обеспечивают недостижимую другими способами точность, сводя к минимуму дополнительную обработку деталей (рис.13). Сейчас для трехмерной печати применяются, в основном, пластики и металлы с низкой температурой плавления. Однако в печати появляются сообщения о том, что для трехмерной печати может применяться и сталь. Технологии развиваются очень быстро, и не успеем оглянуться, как трехмерная печать сталью станет привычным способом получения деталей машин.

Рис.13. Напечатанная стальная структура

Уже сейчас успешно развивается технология 3D-печати SLM (Selective Laser Melting или метод селективного лазерного плавления). В процессе 3D-печати гранулированный стальной порошок распределяется тонким слоем (от 20 μm — 75 μm и до 100 μm) на платформе, которая опускается по вертикали, а печать изделия производится с использованием двойного лазерного луча, расплавляющего порошок слой за слоем, превращая его в однородную металлическую массу. Процедура происходит в закрытой камере с инертными газами (рис. 14).

Рис. 14. Схема принтера 3D-печати по SLM технологии

Маленький трехмерный принтер может стать тем локомотивом, который вытянет к новым рыночным нишам те компании, которые вовремя увидят появление новой технологии и поймут ее возможности для расширения собственного бизнеса.

Вообще, более полное согласование с запросами конечного потребителя - это эффективный путь повышения прибыли предприятий черной металлургии.

Еще один источник дохода сталелитейной компании можно найти, если принять во внимание, что кроме стали и сплавов при производстве стальных изделий образуются и другие продукты, например, шлак и горячая вода.

Шлак широко применяется в строительстве: гранулированный шлак используют для получения шлако-портландцемента, в качестве заполнителя для бетонов, в дорожном строительстве, из шлаковых расплавов вырабатывают минеральную вату, шлаковую пемзу, стекло и стеклокристаллические материалы (шлакоситаллы). Многообещающе использование шлака для получения отливок деталей машин, строительных элементов и т.п. Высокие физико-механические свойства литых каменных и шлаковых изделий позволяют применять их для ответственных конструкций, работающих в тяжелых условиях интенсивного истирания, воздействия агрессивных сред, многократного замораживания и оттаивания.

Представляется целесообразным проведение исследовательских работ по повышению прочности шлакового литья. Например, армирование объемных деталей или покрытие их сталью позволит получить недорогие изделия с высокими прочностными характеристиками.

Шлаки имеют сложный и разнообразный химический состав (встречается до 30-ти химических элементов), что дает возможность добывать полезные элементы для получения дополнительной прибыли.

Горячая вода также может быть использована для растениеводства и рыбоводства в условиях низких температур, получения электроэнергии из бросового тепла и других целей. Интересно, что в некоторых минералогических условиях вода после охлаждения шлака приобретает целебные свойства и может быть использована для лечения различных заболеваний.

Разумеется, в короткой статье невозможно описать все перспективные направления развития продукции черной металлургии. Это большая работа, которую должна проводить сама компания, если она хочет стать лидером в мировой конкуренции.

Один из главных постулатов ТРИЗ гласит:

«Количество ресурсов не ограничено, нужно только увидеть их и правильно использовать».

Это в полной мере справедливо и для черной металлургии.

Важность патентования.

Отслеживать появление новых инновационных технологий, осваивать выпуск новой, инновационной продукции очень важно для металлургической компании, но совершенно недостаточно. Если компания рассчитывает выходить на международные рынки и закрепиться на них, то необходима серьезная работа по созданию, усовершенствованию и патентной защите новых материалов и технологий.

Лучший подход для металлургической компании - как консолидация с другими производителями стали, образование консорциумов, позволяющих концентрировать средства на исследования. Такой консорциум уже может организовывать тесное сотрудничество с компаниями, разработчиками новых технологий.

Важно организовать научно-исследовательскую работу, а также выявление и решение изобретательских задач на всех этапах разработки и производства новых продуктов и инновационных технологий. Это значит, что должна быть организована систематическая работа по решению возникающих задач и созданию новых технологических процессов. Здесь можно вспомнить так называемую «стеклянную сталь», совершенно новый материал с уникальными свойствами. Понадобилось несколько лет, чтобы специалисты нашли путь к широкому производству. Временной отрезок, который заняли исследования, мог бы быть гораздо короче, если бы в металлургической отрасли модернизация в целом и наука в честности занимали достойное место в планируемом бюджете.

Здесь важную помощь может оказать ТРИЗ, поскольку применение ее методик дает возможность систематично организовать инновационный процесс и обеспечить устранение возникающих проблем.

Какие выводы мы сделаем из нашего краткого анализа:

  1. Дерево эволюции показывает, что увеличение прибыли компании обеспечивается снижением затрат на производство традиционной продукции и повышением ее качества.
  2. Для повышения качества продукции и снижения затрат передовые сталелитейные компании, например, ПОСКО, активно и эффективно применяют ТРИЗ.
  3. Важным направлением развития выпускаемой продукции является более полное согласование параметров выпускаемой продукции и требований конечного потребителя.
  4. Для более полного согласования металлургическая компания должна добиваться высокой степени переработки исходного сырья, в идеале поставляя потребителю готовые изделия, не требующие дальнейшей обработки.
  5. Металлургическая компания должна отслеживать появление новых технологий получения изделий из металла, и активно участвовать в создании перспективных технологий и в совершенствовании традиционных.
  6. Ключевым направлением развития металлургии станет разработка, патентование и производство материалов для 3D-печати.
  7. Для решения изобретательских задач, возникающих при работе с новыми материалами и технологиями большой эффект дает применение ТРИЗ.
  8. Для конкуренции на международном рынке металлургическая компания должна занимать агрессивную патентную политику, т.е. патентовать как создаваемые материалы, так и новые технологии.

Различают три основных направления:

  1. Формоизменение при помощи высокоточных методов пластического деформирования.
  2. Применение традиционных способов металлообработки, но отличающихся повышенной точностью и производительностью.
  3. Использование высокоэнергетических методов.

Выбор оптимального метода обработки определяется производственными требованиями и серийностью производства . Например, переутяжелённые конструкции оборудования вызывают повышенный расход энергии, а сниженная точность изготовления отдельных деталей и узлов – низкую производительность техники. Некоторые технологии не могут обеспечить необходимые прочностные свойства и микроструктуру металла, что в итоге сказывается на долговечности и стойкости деталей, пусть даже и изготовленных с минимальными допусками. Новая технология обработки металла основана на использовании нетрадиционных источников энергии, которые обеспечивают его размерное плавление, испарение или формообразование.

Мехобработка, связанная со снятием стружки, развивается в направлении изготовления особо высокоточных изделий преимущественно в мелкосерийном производстве. Поэтому традиционные станки уступают место оперативно переналаживаемым металлообрабатывающим комплексам с ЧПУ. Сравнительно невысокий коэффициент использования материала (при мехобработке он редко когда превышает 70…80% ) компенсируется минимальными допусками и высоким качеством финишной поверхности изделий.

Производители систем с числовым управлением делают основной упор на расширенные технологические возможности рассматриваемого оборудования, использовании современных высокостойких инструментальных сталей и исключении ручного труда оператора. Все подготовительно-заключительные операции на таких комплексах выполняет робототехника.

Энергосберегающие методы пластического деформирования металлов

Технология обработки металлов давлением, кроме повышенного коэффициента использования металла, обладает и другими существенными достоинствами :

  • В результате пластического деформирования улучшается макро- и микроструктура изделия;
  • Производительность оборудования для штамповки в разы превышает аналогичный показатель для металлорежущих станков;
  • После обработки давлением повышается прочность металла, возрастает его стойкость от динамических и ударных нагрузок.

Прогрессивные процессы холодной и полугорячей штамповки – дорнование, точная резка, выдавливание, ультразвуковая обработка, штамповка в состоянии сверхпластичности, жидкая штамповка. Многие из них реализуются на автоматизированном оборудовании, оснащаемом компьютерными системами контроля и управления. Точность изготовления штампованных изделий во многих случаях не требует последующей их доводки – правки, шлифования и т.д.

Высокоэнергетические способы формоизменения

Высокоэнергетические технологии применяются в тех случаях, когда традиционными методами изменять форму и размеры металлической заготовки невозможно.

При этом используются четыре вида энергии :

  1. Гидравлическая - давления жидкости, либо отдельных элементов, приводимых ею в движение.
  2. Электрическая , при которой все процессы съёма материала выполняются с помощью разряда – дугового или искрового.
  3. Электромагнитная , реализующая процесс металлообработки при воздействии на заготовку электромагнитного поля.
  4. Электрофизическая , действующая на поверхность направленным лучом лазера.

Существуют и успешно развиваются также комбинированные способы воздействия на металл, при которых используются два и более источника энергии.

Основана на поверхностном воздействии жидкости высокого давления. Подобные установки применяются, в основном, с целью повышения качества поверхности, снятия микронеровностей, очистки поверхности от ржавчины, окалины и т.п. При этом струя жидкости может воздействовать на изделие как непосредственно, так и через абразивные компоненты, находящиеся в потоке. Абразивный материал, содержащийся в эмульсии, постоянно обновляется, чтобы обеспечить стабильность получаемых результатов.

– процесс размерного разрушения (эрозии) поверхности металла при воздействии на него импульсного, искрового или дугового разряда. Высокая плотность объёмной тепловой мощности источника приводит к размерному плавлению микрочастиц металла с последующим выносом их из зоны обработки потоком диэлектрической рабочей среды (масла, эмульсии). Поскольку при металлообработке одновременно происходят процессы локального нагрева поверхности до весьма высоких температур, то в результате твёрдость детали в зоне обработки существенно увеличивается.

Заключается в том, что обрабатываемое изделие помещается в мощное электромагнитное поле, силовые линии которого воздействуют на заготовку, помещённую в диэлектрик. Таким способом производят формовку малопластичных сплавов (например, титана или бериллия), а также листовых заготовок из стали. Аналогичным образом на поверхность действуют и ультразвуковые волны , генерируемые магнитострикционными или пьезоэлектрическими преобразователями частоты. Высокочастотные колебания применяются также и для поверхностной термообработки металлов.

Наиболее концентрированным источником тепловой энергии является лазер. – единственный способ получения в заготовках сверхмалых отверстий повышенной размерной точности. Ввиду направленности теплового действия лазера на металл, последний в прилегающих зонах интенсивно упрочняется. Лазерный луч способен производить размерную прошивку таких тугоплавких химических элементов, как вольфрам или молибден.

– пример комбинированного воздействия на поверхность химическими реакциями, возникающими при прохождении через заготовку электрического тока. В результате происходит насыщение поверхностного слоя соединениями, которые могут образовываться лишь при повышенных температурах: карбидами, нитридами, сульфидами. Подобными технологиями может выполняться поверхностное покрытие другими металлами, что используется для производства биметаллических деталей и узлов (пластин, радиаторов и т.д.).

Современные технологии обработки металлов непрерывно совершенствуются, используя новейшие достижения науки и техники.

Металлургия сегодня, как и 30 лет назад, делится условно по своему назначению на две группы: первая работает для массового производства, вторая - это спецметаллургия. Соответственно, и материалы делятся на те, к которым не предъявляется особых требований, кроме цены. И на те, для которых очень важны особые характеристики. Одна из главных задач спецматериалов - быть не конструкционными в традиционном понимании, так как их несущая способность не очень важна, а быть частью или основой для ресурсного изделия.

Функциональные характеристики стальных материалов во многом основаны на покрытиях, которые на них нанесены. Они придают материалам новые свойства - жаростойкость и трибологические качества.

Еще одна важная особенность современной металлургии заключается в том, что она должна служить основой для вторичной переработки, то есть необходимо учитывать весь жизненный цикл материалов. Сегодня в качестве сырья используются более сложные и дорогостоящие рудные базы, чем прежде. Поэтому необходимо вовлекать в переработку и иные источники ресурсов, которые прошли восстановление из нетрадиционного сырья, прежде всего вторичного. При этом требования к качеству получаемых из вторсырья материалов остаются очень высокими.

Одной из главных тенденций современной металлургии становится борьба за "чистоту" материала - удаление грубых загрязнений и вредных примесей, исключение появления трещин в процессе эксплуатации. Появившийся в конце 1970-х - начале 1980-х термин "чистая сталь" на какое-то время пропал, а теперь появляется вновь. Но если раньше мы говорили о размерах включения в 20-40 микронов, то сейчас это не более 2-3 микронов, а чаще и нулевой уровень загрязнения. В результате даже традиционные сплавы по своим служебным свойствам становятся новыми.

Классический современный металлический материал обладает двумя основными характеристиками. Во-первых, это конструкционный материал, который предсказуем как по своим свойствам, так и по стоимости, которой можно управлять. Экономические соображения, конечно, говорят о том, что металл своих позиций не сдает.

За последние несколько лет в технологиях обработки металлов произошли две незаметные революции. Одна из них была основана на появлении пятикоординатных станков и твердосплавного инструмента на основе карбида вольфрама. Вторая связана с появлением так называемых аддитивных технологий, основанных на совершенно новых для металлургии принципах. Пятикоординатные станки стали сегодня уже привычными. А вот аддитивные технологии проявят себя в ближайшие три-пять лет.

И это существенно меняет традиционную металлургию. Можно представить, что многие качественные изделия и качественные материалы могут поменять свою форму существования - в основном они будут производиться в виде порошка. И детали будут изготавливаться из них фактически прямым методом. Подтверждением серьезности таких тенденций является и опубликованная несколько дней назад информация о том, что General Electric собирается вложить 1,4 миллиарда долларов в объединение известных компаний, специализирующихся на 3D-печати: шведской Arcam AB и германской SLM Solutions Group AG. Заявленная цель объединения - начать производить изделия для двигателестроения и энергетики на основе 3D-технологий. Нет сомнений, что это сильно встряхнет рынок и даст дополнительный импульс развитию этих технологий.

Ученые разрабатывают материалы, которые могут работать в условиях экстремальных температур

Говоря о новых материалах, нельзя не упомянуть полимеры. Уже давно известно углеволокно: корпус самолета "Боинг 787" полностью сделан из этого материала. В таких изделиях, где требуются одновременно хорошие механические свойства и легкость, конечно, подобные материалы будут заменять металлы, особенно если они эксплуатируются в экстремальных условиях. Но сейчас взаимопроникновение в конструкционных материалах металла и полимера настолько сильное, что уже сложно сказать, что это на самом деле: по толщине это полимер, по свойствам - полимер на металле.

Сегодня индустрия работает по нескольким направлениям. Во-первых, это разработка материалов, которые могут работать в условиях экстремальных температур. Во-вторых, важная работа идет над продлением срока службы материалов, которые могут с гарантией простоять 100 лет. Это актуально, например, для ядерной энергетики. Также многие компании и научные коллективы разрабатывают биосовместимые материалы и особенно композиты, так как мы уже научились сочетать металлы с неметаллами и получать новые прочные материалы. Они требуются современной медицине для производства имплантируемых устройств, протезирования и т.п.

Кстати

Создан материал, не уступающий по прочности металлу, и при этом в 100 раз легче пенополистирола. Материал, известный как "микрорешетка", разработан учеными из HRL Laboratories (США), которая принадлежит Boeing и General Motors. Он на 99,9 процента состоит из воздуха и организован в виде сетки из крошечных полых трубок. Толщина их стенок составляет всего 100 нанометров - в 1000 раз тоньше человеческого волоса. Видео, продемонстрированное разработчиками, показывает, что фрагмент микрорешетки лежит на опушенном одуванчике, не приминая его.

Микрорешетку сделали из хорошо известного металла никель-фосфора, но с необычной архитектурой и с использованием инновационного производственного процесса по принципу 3D-печати. Эта технология имеет большие перспективы в авиастроении, создании космических кораблей и в других сферах производства, где требуются сверхлегкие, но при этом очень прочные материалы. Свойства микрорешетки основаны на тех же принципах, которые позволили создать Эйфелеву башню - сооружение высотой в 324 метра, но при этом невероятно легкое. А Эйфель и его инженеры, как известно, применили в своем шедевре знания того, как устроены кости человека. Современные технологии позволили перевести те же принципы в очень мелкий масштаб.