Постоянная ридберга. Постоянная ридберга Расчет постоянной ридберга

Длины волн излучения атома определенного типа зависят от разности обратных квадратов расстояний между квантовыми числами.

Во второй половине XIX столетия ученые поняли, что атомы различных химических элементов излучают свет строго определенных частот и длин волны, и такое излучение имеет линейчатый спектр , благодаря чему их свет имеет характерную окраску (см. Открытие Кирхгофа—Бунзена). Чтобы убедиться в этом, достаточно взглянуть на уличные фонари. Обратите внимание, что на крупных автомагистралях яркие лампы дневного света имеют обычно желтоватый оттенок. Это следствие того, что они заполнены парами натрия, а в видимом спектре излучения натрия интенсивнее всего проявляются две спектральные линии желтого оттенка.

С развитием спектроскопии стало ясно, что атом любого химического элемента имеет свой набор спектральных линий, по которым его можно вычислить даже в составе далеких звезд, как преступника по отпечаткам пальцев. В 1885 году швейцарский математик Иоганн Бальмер (Johann Balmer, 1825-98) сделал первый шаг в направлении расшифровки закономерности расположения спектральных линий в излучении атома водорода, эмпирически выведя формулу, описывающую длины волн в видимой части спектра атома водорода (так называемая спектральная линия Бальмера ). Водород — самый простой по структуре атом, и поэтому математическое описание расположения линий его спектра было получено раньше всего. Четыре года спустя шведский физик Йоханнес Ридберг обобщил формулу Бальмера, распространив ее на все участки спектра электромагнитного излучения атома водорода, включая ультрафиолетовую и инфракрасную области. Согласно формуле Ридберга, длина световой волны λ, которую излучает атом водорода, определяется формулой

где R — постоянная Ридберга, а n 1 и n 2 — натуральные числа (при этом n 1 n 2). В частности, при n 1 = 2 и n 2 = 3, 4, 5, ... наблюдаются линии видимой части спектра излучения водорода (n 2 = 3 — красная линия; n 2 = 4 — зеленая; n 2 = 5 — голубая; n 2 = 6 — синяя) — это так называемая серия Бальмера . При n 1 = 1 водород дает спектральные линии в ультрафиолетовом диапазоне частот (серия Лаймана ); при n 2 = 3, 4, 5, ... излучение переходит в инфракрасную часть электромагнитного спектра. Значение R было определено экспериментально.

Изначально выявленная Ридбергом закономерность считалась чисто эмпирической. Однако после появления модели атома Бора стало ясно, что она имеет глубокий физический смысл и работает отнюдь не случайно. Рассчитав энергию электрона на n -й орбите от ядра, Бор установил, что она пропорциональна именно -1/n 2).

Данная константа изначально появилась как эмпирический подгоночный параметр в формуле Ридберга , описывающей спектральные серии водорода . Позже Нильс Бор показал, что её значение можно вычислить из более фундаментальных постоянных , объяснив их связь с помощью своей модели атома (модель Бора). Постоянная Ридберга является предельным значением наивысшего волнового числа любого фотона, который может быть испущен атомом водорода; с другой стороны, это волновое число фотона с наименьшей энергией, способного ионизировать атом водорода в его основном состоянии.

Также используется тесно связанная с постоянной Ридберга единица измерения энергии , называемая просто Ридберг и обозначаемая R y {\displaystyle \mathrm {Ry} } . Она соответствует энергии фотона, волновое число которого равно постоянной Ридберга, то есть энергии ионизации атома водорода.

По состоянию на 2012 год, постоянная Ридберга и g-фактор электрона являются наиболее точно измеренными фундаментальными физическими постоянными.

Численное значение

R {\displaystyle R} = 10973731.568508(65) м −1 .

Для лёгких атомов постоянная Ридберга имеет следующие значения:

R y = 13,605 693009 (84) {\displaystyle \mathrm {Ry} =13{,}605693009(84)} эВ = 2,179 872325 (27) × 10 − 18 {\displaystyle 2{,}179872325(27)\times 10^{-18}} Дж.

Свойства

Постоянная Ридберга входит в общий закон для спектральных частот следующим образом:

ν = R Z 2 (1 n 2 − 1 m 2) {\displaystyle \nu =R{Z^{2}}\left({\frac {1}{n^{2}}}-{\frac {1}{m^{2}}}\right)}

где ν {\displaystyle \nu } - волновое число (по определению, это обратная длина волны или число длин волн, укладывающихся на 1 см), Z - порядковый номер атома.

ν = 1 λ {\displaystyle \nu ={\frac {1}{\lambda }}} см −1

Соответственно, выполняется

1 λ = R Z 2 (1 n 2 − 1 m 2) {\displaystyle {\frac {1}{\lambda }}=R{Z^{2}}\left({\frac {1}{n^{2}}}-{\frac {1}{m^{2}}}\right)} R c = 3,289 841960355 (19) × 10 15 {\displaystyle R_{c}=3{,}289841960355(19)\times 10^{15}} с −1

Обычно, когда говорят о постоянной Ридберга, имеют в виду постоянную, вычисленную при неподвижном ядре. При учёте движения ядра масса электрона заменяется приведённой массой электрона и ядра и тогда

R i = R 1 + m / M i {\displaystyle R_{i}={\frac {R}{1+m/M_{i}}}} , где M i {\displaystyle M_{i}} - масса ядра атома.

Введена шведским учёным Йоханнесом Робертом Ридбергом в 1890 году при изучении спектров излучения атомов. Обозначается как R .

Данная константа изначально появилась как эмпирический подгоночный параметр в формуле Ридберга , описывающей спектральные серии водорода . Позже Нильс Бор показал, что её значение можно вычислить из более фундаментальных постоянных , объяснив их связь с помощью своей модели атома (модель Бора). Постоянная Ридберга является предельным значением наивысшего волнового числа любого фотона, который может быть испущен атомом водорода; с другой стороны, это волновое число фотона с наименьшей энергией, способного ионизировать атом водорода в его основном состоянии.

Также используется тесно связанная с постоянной Ридберга единица измерения энергии , называемая просто Ридберг и обозначаемая \mathrm{Ry}. Она соответствует энергии фотона, волновое число которого равно постоянной Ридберга, то есть энергии ионизации атома водорода.

По состоянию на 2012 год, постоянная Ридберга и g-фактор электрона являются наиболее точно измеренными фундаментальными физическими постоянными.

Численное значение

R = 10973731.568508(65) м −1 .

Для лёгких атомов постоянная Ридберга имеет следующие значения:

  • Водород : R_H = 109677.583407 см −1 ;
  • Дейтерий : R_D = 109707,417 см −1 ;
  • Гелий : R_{He} = 109722,267 см −1 .
\mathrm{Ry} = 13{,}605693009(84) эВ = 2{,}179872325(27)\times10^{-18} Дж.

Свойства

Постоянная Ридберга входит в общий закон для спектральных частот следующим образом:

\nu = R{Z^2} \left(\frac{1}{n^2} - \frac{1}{m^2} \right)

где \nu - волновое число (по определению, это обратная длина волны или число длин волн, укладывающихся на 1 см), Z - порядковый номер атома.

\nu = \frac{1}{\lambda} см −1

Соответственно, выполняется

\frac{1}{\lambda} = R{Z^2} \left(\frac{1}{n^2} - \frac{1}{m^2} \right) R_c = 3{,}289841960355(19)\times10^{15} с −1

Обычно, когда говорят о постоянной Ридберга, имеют в виду постоянную, вычисленную при неподвижном ядре. При учёте движения ядра масса электрона заменяется приведённой массой электрона и ядра и тогда

R_i = \frac{R}{1 + m / M_i}, где M_i - масса ядра атома.

См. также

Напишите отзыв о статье "Постоянная Ридберга"

Примечания

Литература

  • Шпольский Э. В. Атомная физика. Том1 - М.: Наука, 1974.
  • Борн М. Атомная физика. - М.: Мир, 1970.
  • Савельев И. В. Курс общей физики. Книга 5. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. - М.: АСТ, Астрель, 2003.

Отрывок, характеризующий Постоянная Ридберга

– Ах, какая досада! – сказал Долгоруков, поспешно вставая и пожимая руки князя Андрея и Бориса. – Вы знаете, я очень рад сделать всё, что от меня зависит, и для вас и для этого милого молодого человека. – Он еще раз пожал руку Бориса с выражением добродушного, искреннего и оживленного легкомыслия. – Но вы видите… до другого раза!
Бориса волновала мысль о той близости к высшей власти, в которой он в эту минуту чувствовал себя. Он сознавал себя здесь в соприкосновении с теми пружинами, которые руководили всеми теми громадными движениями масс, которых он в своем полку чувствовал себя маленькою, покорною и ничтожной» частью. Они вышли в коридор вслед за князем Долгоруковым и встретили выходившего (из той двери комнаты государя, в которую вошел Долгоруков) невысокого человека в штатском платье, с умным лицом и резкой чертой выставленной вперед челюсти, которая, не портя его, придавала ему особенную живость и изворотливость выражения. Этот невысокий человек кивнул, как своему, Долгорукому и пристально холодным взглядом стал вглядываться в князя Андрея, идя прямо на него и видимо, ожидая, чтобы князь Андрей поклонился ему или дал дорогу. Князь Андрей не сделал ни того, ни другого; в лице его выразилась злоба, и молодой человек, отвернувшись, прошел стороной коридора.
– Кто это? – спросил Борис.
– Это один из самых замечательнейших, но неприятнейших мне людей. Это министр иностранных дел, князь Адам Чарторижский.
– Вот эти люди, – сказал Болконский со вздохом, который он не мог подавить, в то время как они выходили из дворца, – вот эти то люди решают судьбы народов.
На другой день войска выступили в поход, и Борис не успел до самого Аустерлицкого сражения побывать ни у Болконского, ни у Долгорукова и остался еще на время в Измайловском полку.

На заре 16 числа эскадрон Денисова, в котором служил Николай Ростов, и который был в отряде князя Багратиона, двинулся с ночлега в дело, как говорили, и, пройдя около версты позади других колонн, был остановлен на большой дороге. Ростов видел, как мимо его прошли вперед казаки, 1 й и 2 й эскадрон гусар, пехотные батальоны с артиллерией и проехали генералы Багратион и Долгоруков с адъютантами. Весь страх, который он, как и прежде, испытывал перед делом; вся внутренняя борьба, посредством которой он преодолевал этот страх; все его мечтания о том, как он по гусарски отличится в этом деле, – пропали даром. Эскадрон их был оставлен в резерве, и Николай Ростов скучно и тоскливо провел этот день. В 9 м часу утра он услыхал пальбу впереди себя, крики ура, видел привозимых назад раненых (их было немного) и, наконец, видел, как в середине сотни казаков провели целый отряд французских кавалеристов. Очевидно, дело было кончено, и дело было, очевидно небольшое, но счастливое. Проходившие назад солдаты и офицеры рассказывали о блестящей победе, о занятии города Вишау и взятии в плен целого французского эскадрона. День был ясный, солнечный, после сильного ночного заморозка, и веселый блеск осеннего дня совпадал с известием о победе, которое передавали не только рассказы участвовавших в нем, но и радостное выражение лиц солдат, офицеров, генералов и адъютантов, ехавших туда и оттуда мимо Ростова. Тем больнее щемило сердце Николая, напрасно перестрадавшего весь страх, предшествующий сражению, и пробывшего этот веселый день в бездействии.
– Ростов, иди сюда, выпьем с горя! – крикнул Денисов, усевшись на краю дороги перед фляжкой и закуской.
Офицеры собрались кружком, закусывая и разговаривая, около погребца Денисова.
– Вот еще одного ведут! – сказал один из офицеров, указывая на французского пленного драгуна, которого вели пешком два казака.
Один из них вел в поводу взятую у пленного рослую и красивую французскую лошадь.
– Продай лошадь! – крикнул Денисов казаку.
– Изволь, ваше благородие…
Офицеры встали и окружили казаков и пленного француза. Французский драгун был молодой малый, альзасец, говоривший по французски с немецким акцентом. Он задыхался от волнения, лицо его было красно, и, услыхав французский язык, он быстро заговорил с офицерами, обращаясь то к тому, то к другому. Он говорил, что его бы не взяли; что он не виноват в том, что его взяли, а виноват le caporal, который послал его захватить попоны, что он ему говорил, что уже русские там. И ко всякому слову он прибавлял: mais qu"on ne fasse pas de mal a mon petit cheval [Но не обижайте мою лошадку,] и ласкал свою лошадь. Видно было, что он не понимал хорошенько, где он находится. Он то извинялся, что его взяли, то, предполагая перед собою свое начальство, выказывал свою солдатскую исправность и заботливость о службе. Он донес с собой в наш арьергард во всей свежести атмосферу французского войска, которое так чуждо было для нас.
Казаки отдали лошадь за два червонца, и Ростов, теперь, получив деньги, самый богатый из офицеров, купил ее.

Устойчивость любой системы в атомных масштабах вытекает из принципа неопределённостей Гайзенберга (четвёртый раздел седьмой главы). Поэтому последовательное изучение свойств атома возможно только в рамках квантовой теории. Тем не менее, некоторые результаты, имеющие важное практическое значение, можно получить и в рамках классической механики, приняв дополнительные правила квантования орбит.

В этой главе мы вычислим положение энергетических уровней атома водорода и водородоподобных ионов. В основу расчётов положим планетарную модель, согласно которой электроны вращаются вокруг ядра под действием сил кулоновского притяжения. Полагаем, что электроны движутся по орбитам круговой формы.

13.1. Принцип соответствия

Квантование углового момента применяется в модели атома водорода, предложенной Бором в 1913г. Бор исходил из того, что в пределе малых квантов энергии результаты квантовой теории должны соответствовать выводам классической механики. Он сформулировал три постулата.

1. Атом может длительное время находиться только в определённыхсостояниях с дискретными уровнями энергии E i . Электроны, вращаясь по соответствующим дискретным орбитам, движутся ускоренно, но, тем не менее, они не излучают. (В классической электродинамике излучает всякая ускоренно движущаяся частица, если она имеет отличный от нуля заряд).

2. Излучение исходит либо поглощается квантами при переходе между энергетическими уровнями:


3. Принцип соответствия. Он гласит, что при переходе между высокими (n >> 1) соседними орбитами n и n + 1 , частота ω n ,n +1 излучаемого кванта энергии равна частоте ω n вращения электрона на n -й орбите.

Из этих постулатов вытекает правило квантования момента вращения электрона


(1.1) M = n ·ħ ,

где n может быть равен любому натуральному числу:


(1.1a) n = 1, 2, 3,…

Параметр n называется главным квантовым числом . Для вывода формул (1.1) выразим энергию уровня через момент вращения. В спектроскопии часто важно знать энергии уровней с пятью–восемью верными знаками, поэтому необходимо учесть движение ядра. Для его учёта вводится понятие приведённой массы.

13.2. Приведённая масса

Электрон движется вокруг ядра под действием электростатической силы


где r - вектор, начало которого совпадает с положением ядра, а конец указывает на электрон. Напомним, что Z - это атомный номер ядра, а заряды ядра и электрона равны, соответственно Ze и -e . По третьему закону Ньютона, на ядро действует сила, равная –f (она равна по модулю и направлена противоположно силе, действующей на электрон). Запишем уравнения движения электрона



Введём новые переменные: скорость электрона относительно ядра


и скорость центра масс

Сложив (2.2a ) и (2.2b ), получим

Таким образом, центр масс замкнутой системы движется равномерно и прямолинейно. Теперь поделим (2.2b) на m Z и вычтем его из (2.2a), делённого на m e . В результате получается уравнение для относительной скорости электрона:

Входящая в него величина


называется приведённой массой . Таким образом, задача о совместном движении двух частиц - электрона и ядра - упрощается. Достаточно рассмотреть движение вокруг ядра одной частицы, положение которой совпадает с положением электрона, а её масса равна приведённой массе системы.

13.3. Связь между энергией и моментом вращения

Сила кулоновского взаимодействия направлена вдоль прямой, соединяющей заряды, а её модуль зависит только от расстояния r между ними. Следовательно, уравнение (2.5) описывает движение частицы в центрально–симметричном поле. Важным свойством движения в поле с центральной симметрией является сохранение энергии и момента вращения.

Запишем условие, что движение электрона по круговой орбите определяется кулоновским притяжением к ядру:

Из него следует, что кинетическая энергия

равна половине потенциальной энергии

взятой с обратным знаком:



Полная энергия E, соответственно, равна:

.

Она получилась отрицательной, как и должно быть для устойчивых состояний. Состояния атомов и ионов с отрицательной энергией называются связанными . Умножив уравнение (3.4) на 2r и заменив в левой части произведение mV r на момент вращения M , выразим скорость V через момент:

.

Подставляя полученное значение скорости в (3.5), получим искомую формулу для полной энергии:

Обратим внимание на то, что энергия пропорциональна чётной степени момента вращения, поэтому E (- M ) = E (M ). В теории Бора этот факт имеет важные следствия.

13.4. Квантование момента вращения

Второе уравнение для переменных V и r мы получим из правила квантования орбит, вывод которого выполним, исходя из постулатов Бора. Дифференцируя формулу (3.5), получаем связь между малыми изменениями момента и энергии:

.

Согласно третьему постулату, частота излучаемого (или поглощаемого) фотона равна частоте обращения электрона на орбите:

.

Из формул (3.4), (4.2) и связи


между скоростью, моментом вращения и радиусом вытекает простое выражение для изменения момента импульса при переходе электрона между соседними орбитами:

Интегрируя (4.3), получаем

.

Константу C будем искать в полуоткрытом интервале

.

Двойное неравенство (4.5) не вносит никаких дополнительных ограничений: если С выходит за пределы (4.5), то её можно вернуть в этот интервал, просто перенумеровав значения момента в формуле (4.4).

Физические законы одинаковы во всех системах отсчёта. Перейдём от правовинтовой системы координат к левовинтовой. Энергия, как всякая скалярная величина, при этом останется прежней,

.

Иначе ведёт себя аксиальный вектор момента вращения. Как известно, всякий аксиальный вектор при выполнении указанной операции меняет знак:

Между (4.6) и (4.7) нет противоречия, так как энергия, согласно (3.7), обратно пропорциональна квадрату момента и остаётся прежней при смене знака M .

Таким образом, набор отрицательных значений момента должен повторять набор его положительных значений. Иными словами, для каждого положительного значения M n обязательно должно найтись равное ему по модулю отрицательное значение M – m :

Объединяя (4.4) – (4.8), получаем линейное уравнение для С :

,

с решением

.

Легко убедиться, что формула (4.9) даёт два значения константы С , удовлетворяющие неравенству (4.5):

.

C =0

C = 1/2

Полученный результат иллюстрирует таблица, в которой приведены ряды момента для трёх значений С: 0, 1/2 и 1/4. Хорошо видно, что в последней строке (n =1/4) величина момента вращения для положительных и отрицательных значений n различается по абсолютной величине.

Совпадение с экспериментальными данными Бору удалось получить, положив константу C равной нулю. Тогда правило квантования орбитального момента описываются формулами (1). Но также имеет смысл и значение C равное половине. Оно описывает внутренний момент электрона, или его спин - понятие, которое будет подробно рассмотрено в других главах. Часто планетарную модель атома излагают, начиная с формулы (1), но исторически она была выведена из принципа соответствия.

13.5. Параметры орбиты электрона

Формулы (1.1) и (3.7) приводит к дискретному набору радиусов орбиты и скоростей электрона, которые можно перенумеровать с помощью квантового числа n :

Им соответствует дискретный энергетический спектр. Полная энергия электрона E n может быть вычислена по формулам (3.5) и (5.1):

Мы получили дискретный набор энергетических состояний атома водорода или водородоподобного иона. Состояние, отвечающее значению n , равному единице, называется основным, все остальные - возбуждёнными, а если n очень велико, , то - сильно возбуждёнными. Рисунок 13.5.1 иллюстрирует формулу (5.2) для атома водорода. Пунктиром


обозначена граница ионизации. Хорошо видно, что первый возбуждённый уровень значительно ближе к границе ионизации, чем к основному

состоянию. Приближаясь к границе ионизации, уровни на рис.13.5.2 постепенно сгущаются

.
Бесконечно много уровней имеет только уединённый атом. В реальной среде различные взаимодействия с соседними частицами приводят к тому, что у атома остаётся только конечное число нижних уровней. Например, в условиях звёздных атмосфер атом имеет обычно 20–30 состояний, но в разреженном межзвёздном газе могут наблюдаться сотни уровней, но не более тысячи.

В первой главе мы ввели ридберг, исходя из соображений размерности. Формула (5.2) раскрывает физический смысл этой константы как удобной единицы измерения энергии атома. Кроме того, она показывает, что Ry зависит от отношения :

В силу большого различия масс ядра и электрона эта зависимость является весьма слабой, но в некоторых случаях ею пренебрегать нельзя. В числителе последней формулы стоит константа

эрг эВ,

к которой стремится величина Ry при неограниченном увеличении массы ядра. Таким образом, мы уточнили единицу измерения Ry , приведённую в первой главе.

Правило квантования момента (1.1), конечно, является менее точным, чем выражение (12.6.1) для собственного значения оператора . Соответственно, формулы (3.6) – (3.7) имеют весьма ограниченный смысл. Тем не менее, как мы убедимся ниже, окончательный результат (5.2) для уровней энергии совпадает с решением уравнения Шредингера. Им можно пользоваться во всех случаях, если релятивистские поправки пренебрежимо малы.

Итак, согласно планетарной модели атома, в связанных состояниях скорость вращения, радиус орбиты и энергия электрона принимают дискретный ряд значений и полностью определяются величиной главного квантового числа. Состояния с положительной энергией называют свободными ; они не квантуются, и все параметры электрона в них, кроме момента вращения, могут принимать любые значения, не противоречащие законам сохранения. Момент вращения квантуется всегда.

Формулы планетарной модели позволяют вычислить потенциал ионизации атома водорода или водородоподобного иона, а также длину волны перехода между состояниями с разными значениями n. Можно также оценить размер атома, линейную и угловую скорости движения электрона по орбите.

Выведенные формулы имеют два ограничения. Во–первых, в них не учитываются релятивистские эффекты, что даёт ошибку порядка (V /c ) 2 . Релятивистская поправка растёт по мере увеличения заряда ядра как Z 4 и для иона FeXXVI уже составляет доли процента. В конце данной главы мы рассмотрим этот эффект, оставаясь в рамках планетарной модели. Во–вторых, помимо квантового числа n энергия уровней определяется другими параметрами - орбитальным и внутренним моментами электрона. Поэтому уровни расщепляются на несколько подуровней. Величина расщепления также пропорциональна Z 4 и становится заметной у тяжёлых ионов.

Все особенности дискретных уровней учитываются в последовательной квантовой теории. Тем не менее, простая теория Бора оказывается простым, удобным и достаточно точным методом исследования структуры ионов и атомов.

13.6.Постоянная Ридберга

В оптическом диапазоне спектра обычно измеряется не энергия кванта E , а длина волны l перехода между уровнями. Поэтому для измерения энергии уровня часто используется волновое число E/hc , измеряемое в обратных сантиметрах. Волновое число, соответствующее , обозначается : см -1

Индекс ¥ напоминает о том, что масса ядра в этом определении считается бесконечно большой. С учётом конечной массы ядра постоянная Ридберга равна

У тяжёлых ядер она больше, чем у лёгких. Отношение масс протона и электрона равно

Подставляя это значение в (2.2) получим численное выражение постоянной Ридберга для атома водорода:

(6.4) R H = 109677.58 см -1 .

Ядро тяжёлого изотопа водорода - дейтерия - состоит из протона и нейтрона, и приблизительно вдвое тяжелее ядра атома водорода - протона. Поэтому, согласно (6.2), постоянная Ридберга у дейтерия R D больше, чем у водорода R H:

(6.5) R D = 109708.60 см -1 .

Ещё выше она у нестабильного изотопа водорода - трития, ядро которого состоит из протона и двух нейтронов.

У элементов середины таблицы Менделеева эффект изотопического сдвига конкурирует с эффектом, связанным с конечными размерами ядра. Эти эффекты имеют противоположный знак и компенсируют друг друга для элементов, близких к кальцию.

13.7. Изоэлектронная последовательность водорода

Согласно определению, данному в четвёртом разделе седьмой главы, ионы, состоящие из ядра и одного электрона, называются водородоподобными. Иными словами, они относятся к изоэлектронной последовательности водорода. Их структура качественно напоминает атом водорода, а положение энергетических уровней ионов, заряд ядра которых не слишком велик (Z < 10), может быть вычислено по простой формуле (5.2). Однако у высокозарядных ионов (Z > 20) появляются количественные отличия, связанные с релятивистскими эффектами: зависимостью массы электрона от скорости и спин–орбитальным взаимодействием.

Мы рассмотрим наиболее интересные в астрофизике ионы гелия, кислорода и железа. В спектроскопии заряд иона задаётся с помощью спектроскопического символа , который записывается римскими цифрами справа от символа химического элемента. Число, изображаемое римской цифрой, на единицу превышает количество удалённых из атома электронов. Например, атом водорода обозначается как HI , а водородоподобные ионы гелия, кислорода и железа, соответственно, HeII , OVIII и FeXXVI . Для многоэлектронных ионов спектроскопический символ совпадает с эффективным зарядом, который «чувствует» валентный электрон.

Рассчитаем движение электрона по круговой орбите с учётом релятивистской зависимости его массы от скорости. Уравнения (3.1) и (1.1) в релятивистском случае выглядят следующим образом:

Приведённая масса m определена формулой (2.6). Напомним также, что


β = V /c .

Умножим первое уравнение на r 2 и поделим его на второе. В результате получим

Постоянная тонкой структуры a введена в формуле (2.2.1) первой главы. Зная скорость, вычисляем радиус орбиты:

В специальной теории относительности кинетическая энергия равна разности полной энергии тела и его энергии покоя при отсутствии внешнего силового поля:

Потенциальная энергия U как функция r определяется формулой (3.3). Подставляя в выражения для T и U полученные значения b и r , получим полную энергию электрона:

Для электрона, вращающегося на первой орбите водородоподобного иона железа, величина b 2 равна 0.04. У более лёгких элементов она, соответственно, ещё меньше. При справедливо разложение

Первое слагаемое, как легко убедиться, с точностью до обозначений равно значению энергии (3.5) в нерелятивистской теории Бора, а второе представляет собой искомую релятивистскую поправку. Обозначим первое слагаемое как E B , тогда

Итак, относительная величина релятивистской поправки пропорциональна произведению (a Z ) 2 . Учёт зависимости массы электрона от скорости приводит к увеличению глубины уровней. Это можно понять следующим образом: абсолютная величина энергии растёт вместе с массой частицы, а движущийся электрон тяжелее неподвижного. Ослабление эффекта с ростом квантового числа n является следствием более медленного движения электрона в возбуждённом состоянии.

13.8. Высоковозбуждённые состояния

Состояния атома или иона любого химического элемента, в котором один из электронов находится на высоком энергетическом уровне, называют высоковозбуждёнными , или ридберговскими. Они обладают важным свойством: положение уровней возбуждённого электрона с достаточно высокой точностью может быть описано в рамках модели Бора. Дело в том, что электрон с большим значением квантового числа n , согласно (5.1), находится очень далеко от ядра и других электронов. Такой электрон в спектроскопии принято называть «оптическим», или «валентным», а остальные электроны вместе с ядром - «атомным остатком». Схематически структура атома с одним сильно возбуждённым электроном изображена на рис.13.8.1. Слева внизу помещен атомный




остаток: ядро и электроны в основном состоянии. Пунктирная стрелка указывает на валентный электрон. Расстояния между всеми электронами внутри атомного остатка гораздо меньше, чем расстояние от любого из них до оптического электрона. Поэтому их суммарный заряд можно считать практически полностью сосредоточенным в центре. Следовательно, можно полагать, что оптический электрон движется под действием кулоновской силы, направленной к ядру, и, таким образом, его уровни энергии вычисляются по формуле Бора (5.2). Электроны атомного остатка экранируют ядро, но не полностью. Для учёта частичной экранировки введено понятие эффективного заряда атомного остатка Z eff . В рассматриваемом случае сильно удалённого электрона величина Z eff равна разности атомного номера химического элемента Z и числа электронов атомного остатка. Здесь мы ограничимся случаем нейтральных атомов, для которых Z eff = 1.

Положение сильно возбуждённых уровней получается в теории Бора для любого атома. Достаточно в (2.6) заменить m Z на массу атомного остатка m R , которая меньше массы атома m A на величину массы электрона. С помощью получаемого отсюда тождества

мы можем выразить постоянную Ридберга как функцию атомного веса A рассматриваемого химического элемента:

Множитель перед A равен обратной величине атомного веса электрона. В расчётах мы исходили из физической шкалы, в которой атомный вес изотопа углерода 12 С равен точно двенадцати. Атомные веса водорода и гелия в этой шкале равны, соответственно, 1.007825 и 4.00260.

Формула Ридберга - эмпирическая формула, описывающая длины волн в спектрах излучения атомов химических элементов. Предложена шведским учёным Йоханнесом Ридбергом и представлена 5 ноября 1888 года.

Формула Ридберга для водородоподобных элементов выглядит следующим образом:

Длина волны света в вакууме;

Постоянная Ридберга для рассматриваемого химического элемента;

Атомный номер, или число протонов в ядре атома данного элемента;

И - целые числа, такие что .


27) Атом водорода: по Томсону, Бору

Модель Бора

Боровская модель водородоподобного атома (Z - заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро. Переход электрона с орбиты на орбиту сопровождается излучением или поглощением кванта электромагнитной энергии ().

Полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка: .

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты R n и энергии E n находящегося на этой орбите электрона:

Здесь m e - масса электрона, Z - количество протонов в ядре, - диэлектрическая постоянная, e - заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера, решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R 0 =5,2917720859(36)×10 −11 м, ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты E 0 = − 13.6 эВ представляет собой энергию ионизации атома водорода.


28) Опыт Франка Герца

Суть опытов, предложенных и проведенных Франком и Герцем в 1913 году, состояла в нахождении потенциалов ионизации атомов ртути, т.е. в определении энергии ускоренного электрона в наполненной парами ртути трехэлектродной лампе, который, сталкиваясь с атомом ртути, мог отщепить слабосвязанный с ним внешний (валентный) электрон. Заметим, что в том же году Н. Бор сформулировал свои постулаты.


Согласно идеям Бора энергия электрона в атоме может принимать непроизвольные значения, а лишь значения из определенного дискретного набора, впоследствии названные энергетическими уровнями. Эти энергетические уровни иногда называют оптическими уровнями, так как при любых переходах между ними поглощаются или излучаются фотоны, длины волн которых лежат в видимой или соседних областях спектра.

Опыт, явившийся экспериментальным доказательством дискретности внутренней энергии атома. Поставлен в 1913 Дж. Франком и Г. Герцем.

На рисунке приведена схема опыта. К катоду К и сетке C1 электровакуумной трубки, наполненной парами Hg (ртути), прикладывается разность потенциалов V, ускоряющая электроны, и снимается зависимость силы тока I от V. К сетке C2 и аноду А прикладывается замедляющая разность потенциалов. Ускоренные в области I электроны испытывают соударения с атомами Hg в области II. Если энергия электронов после соударения достаточна для преодоления замедляющего потенциала в области III, то они попадут на анод. Следовательно, показания гальванометра Г зависят от потери электронами энергии при ударе.

В опыте наблюдался монотонный рост I при увеличении ускоряющего потенциала вплоть до 4,9 В, то есть электроны с энергией Е < 4,9 эВ испытывали упругие соударения с атомами Hg и внутренняя энергия атомов не менялась. При значении V = 4,9 В (и кратных ему значениях 9,8 В, 14,7 В) появлялись резкие спады тока. Это определённым образом указывало на то, что при этих значениях V соударения электронов с атомами носят неупругий характер, то есть энергия электронов достаточна для возбуждения атомов Hg. При кратных 4,9 эВ значениях энергии электроны могут испытывать неупругие столкновения несколько раз.

Таким образом, опыт Франка - Герца показал, что спектр поглощаемой атомом энергии не непрерывен, а дискретен, минимальная порция (квант электромагнитного поля), которую может поглотить атом Hg, равна 4,9 эВ. Значение длины волны λ = 253,7 нм свечения паров Hg, возникавшее при V > 4,9 В, оказалось в соответствии со вторым постулатом Бора

,

где E 0 и E 1 - энергии основного и возбужденного уровней энергии. В опыте Франка - Герца, E 0 - E 1 = 4,9 эВ.


29) Волны Луи де Бройля

Волны, связанные с любой микрочастицей и отражающие их квантовую природу.

; -позволяет найти длину волны для частицы, которая обладает импульсом р.

Для е: ; 1[Ангстрем]=[м].

Свойство волн де Бройля.

;

(фаза скорости волны де Бройля>скорости света);


30) Принцип неопределённости Гейзенберга

Определение: произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше, чем постоянная Планка.

Обобщённый принцип неопределённости

Теорема . Для любых самосопряжённых операторов: и , и любого элемента x из H такого, что ABx и BAx оба определены (то есть, в частности, Ax и Bx также определены), имеем:

Это прямое следствие неравенства Коши - Буняковского.

Следовательно, верна следующая общая форма принципа неопределённости , впервые выведенная в 1930 г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером:

Это неравенство называют соотношением Робертсона - Шрёдингера .

Оператор AB BA называют коммутатором A и B и обозначают как [A ,B ]. Он определен для тех x , для которых определены оба ABx и BAx .

Из соотношения Робертсона - Шрёдингера немедленно следует соотношение неопределённости Гейзенберга :

Предположим, A и B - две физические величины, которые связаны с самосопряжёнными операторами. Если AB ψ и BA ψ определены, тогда:

,

Среднее значение оператора величины X в состоянии ψ системы, и

Оператор стандартного отклонения величины X в состоянии ψ системы.

Приведённые выше определения среднего и стандартного отклонения формально определены исключительно в терминах теории операторов. Утверждение становится однако более значащим, как только мы заметим, что они являются фактически средним и стандартным отклонением измеренного распределения значений. См. квантовая статистическая механика.

То же самое может быть сделано не только для пары сопряжённых операторов (например координаты и импульса, или продолжительности и энергии), но вообще для любой пары Эрмитовых операторов. Существует отношение неопределённости между напряжённостью поля и числом частиц, которое приводит к явлению виртуальных частиц.

Возможно также существование двух некоммутирующих самосопряжённых операторов A и B , которые имеют один и тот же собственный вектор ψ. В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B .

Общие наблюдаемые переменные, которые повинуются принципу неопределённости

Предыдущие математические результаты показывают, как найти отношения неопределённости между физическими переменными, а именно, определить значения пар переменных A и B , коммутатор которых имеет определённые аналитические свойства.

  • самое известное отношение неопределённости - между координатой и импульсом частицы в пространстве: