С помощью двух одинаковых воздушных шаров. Разноуровневые самостоятельные работы

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Актуальность

Знакома ли вам ситуация, когда после дня рождения или какого-то другого праздника в доме появляется множество воздушных шаров? Сначала шарики детей радуют, они играют с ними, но вскоре на них перестают обращать внимание и шарики только путаются под ногами. Что с ними сделать, чтобы они не лежали без всякой цели, а принесли пользу? Конечно же, использовать в познавательной деятельности!

Вообще, воздушные шарики - прекрасный материал для демонстрации различных опытов и моделей. Было бы интересно написать книжку, в которой все физические понятия будут объяснятся через них. Ну а пока я хочу предложить вам провести больше десятка экспериментов из разных областей науки - от термодинамики до космологии, - в которых общим является реквизит: воздушные шары.

Цель: Исследовать воздушные шарики как бесценный подручный материал для наблюдения физических явлений и постановки различных физических экспериментов.

Задачи :

    Изучить историю создания воздушных шариков.

    Поставить ряд экспериментов с воздушными шариками.

    Проанализировать наблюдаемые явления и сформулировать выводы.

    Создать мультимедийную презентацию.

Объект исследования: воздушный шарик.

Методы исследования:

. Теоретические: изучение литературы по теме исследования.

. Сравнительно-сопоставительный.

. Эмпирические: наблюдение, измерение.

. Экспериментально-теоретические : эксперимент, лабораторный опыт.

Материалом данного исследования являются Интернет-источники, методические пособия по физике, учебники физики, задачники, данные архива и другая справочная литература.

Практическая значимость: результаты исследования могут быть использованы на уроках физики, на конференциях, при чтении элективных курсов и на внеклассных мероприятиях.

    Теоретическая часть

История создания воздушных шариков

Глядя на современные воздушные шары, многие люди думают, что эта яркая, приятная игрушка стала доступной только недавно. Некоторые, более осведомленные, считают, что воздушные шары появились где-то в середине прошлого века, одновременно с началом технической революции. На самом деле это не так. История шаров, наполненных воздухом, началась гораздо раньше. Только выглядели предки наших шариков совсем не так, как сейчас. Первые, дошедшие до нас, упоминания об изготовлении летящих в воздухе шаров встречаются в карельских рукописях. В них описывается создание такого шара, сделанного из кожи кита и быка. А летописи XII века рассказывают нам о том, что в карельских поселках воздушный шар имела практически каждая семья. Причем именно с помощью таких шаров древние карелы частично решали проблему бездорожья - шары помогали людям преодолевать расстояния между населенными пунктами. Но такие путешествия были достаточно опасными: оболочка из шкур животных не могла выдерживать давление воздуха долгое время - то есть, говоря другими словами, эти воздушные шары были взрывоопасными. И вот, в итоге, от них остались только легенды. Но не прошло и 7 столетий с той полумифической эпохи, как в Лондоне профессором Майклом Фарадеем были изобретены резиновые воздушные шары. Ученый изучил эластические свойства каучука - и соорудил из этого материала две «лепешки». Для того чтобы «лепешки» не слипались, Фарадей обработал их внутренние стороны мукой. И после этого пальцами склеил их необработанные, оставшиеся липкими края. В итоге получилось нечто вроде мешочка, который можно было использовать для опытов с водородом. Лет через 80 после этого научный мешочек для водорода превратился в популярную забаву: каучуковые шары широко использовались в Европе во время городских праздников. За счет наполнявшего их газа они могли подниматься вверх - и это очень нравилось публике, еще не избалованной ни воздушными полетами, ни другими чудесами техники. Но эти воздушные шарики чем-то походили на своих легендарных предшественников: в них применялся водород (а он, как известно, газ взрывоопасный). Но, тем не менее, к водороду все привыкли - благо, что особых бед от шариков с этим газом не было вплоть до 1922 года. Тогда в США на одном из городских праздников некий шутник ради забавы взорвал художественное оформление праздника - то есть воздушные шарики. В результате этого взрыва пострадал чиновник, и поэтому органы правопорядка отреагировали достаточно оперативно. Забаву, оказавшуюся достаточно опасной,

наконец-то прекратили, запретив наполнять воздушные шарики водородом. От этого решения никто не пострадал - место водорода в шариках моментально занял гораздо более безопасный гелий. Этот новый газ поднимал шарики вверх ничуть не хуже, чем это делал водород. В 1931 году Нейлом Тайлотсоном был выпущен первый современный, латексный воздушный шарик (полимер латекс получают из водных дисперсий каучуков). И с тех пор воздушные шарики наконец-то смогли измениться! До этого они могли быть только круглыми - а с приходом латекса впервые появилась возможность создавать длинные, узкие шарики. Это новшество немедленно нашло применение: дизайнеры, оформляющие праздники, стали создавать из шаров композиции в виде собак, жирафов, самолетов, шляп… Компания Нейла Тайлотсона продавала через почту миллионы комплектов шаров, предназначенных для создания смешных фигурок. Качество воздушных шариков в то время было далеко не таким, как сейчас: при надувании шарики теряли часть своей яркости, они были непрочными и быстро лопалось. Поэтому воздушные шарики медленно утрачивали свою популярность - то, что они могут летать в воздухе, в двадцатом веке уже не казалось таким чудесным и интересным.Поэтому, еще задолго до конца 20 века, воздушные шарики стали раскупаться только для городских и детских праздников. Но изобретатели не забывали о воздушных шариках, работали над их улучшением. И ситуация изменилась. Сейчас промышленность выпускает такие шарики, которые не теряют цвет при своем надувании - и вдобавок стали гораздо более прочными, долговечными. Поэтому сейчас воздушные шарики вновь стали очень популярны - дизайнеры охотно используют их при оформлении разнообразных праздников, концертов, презентаций. Свадьбы, дни рождения, общегородские праздники, PR-компании, шоу… - обновленные, яркие шары везде на месте. Вот такая интересная, давняя история у простой, с детства знакомой нам забавы.

    Практическая часть

Эксперимент №1

Качественное сравнение плотностей воды - горячей, холодной и соленой

Если исследовать не смешивающиеся и не вступающие в химическую реакцию жидкости, то достаточно просто слить их в один прозрачный сосуд, допустим, пробирку. О плотности можно судить по расположению слоев: чем ниже слой, тем выше плотность. Другое дело, если жидкости смешиваются, как, например, горячая, холодная и соленая вода.

Мы сравниваем поведение шариков, наполненных водой горячей, холодной и подсоленной в, соответственно, горячей, холодной и подсоленной воде. В результате опыта мы можем сделать вывод о плотностях этих жидкостей.

Оборудование: три шарика разных цветов, трехлитровая банка, холодная, горячая и соленая вода.

Ход эксперимента

    Наливаем три порции разной воды в шарики - в синий горячую,

в зеленый холодную и в красный соленую воду.

2.Наливаем в банку горячую воду, помещаем туда по очереди шарики (Приложение №1).

3.Наливаем в емкость холодную воду, снова помещаем туда по очереди все шарики.

4.Наливаем в банку соленую воду, наблюдаем за поведением шариков.

Вывод:

1. Если плотность жидкостей различна, то жидкость с меньшей плотностью всплывает над жидкостью с большей плотностью, то есть

горячей воды < холодной воды < соленой воды

2. Чем больше плотность жидкости, тем больше ее выталкивающая сила:

F А =Vg; так как V и g постоянны F А зависит от величины.

Эксперимент №2

Худеющий и толстеющий шарик. То, что различные тела и газы расширяются от тепла и сжимаются от холода, можно легко продемонстрировать на примере воздушного шара.В морозную погоду возьмите с собой на прогулку воздушный шар и там туго надуйте его. Если потом внести этот шарик в теплый дом, то он, скорее всего, лопнет. Это произойдет из-за того, что от тепла воздух внутри шара резко расширится и резина не выдержит давления.

Оборудование: воздушный шарик, сантиметровая лента, холодильник, кастрюля с горячей водой

Ход эксперимента

Задание № 1 1. Надуваем в теплой комнате воздушный шарик.

2. С помощью сантиметровой ленты измерили его окружность (у нас получилось 80,6 см).

3. После этого положили шарик в холодильник на 20-30 минут.

4. Снова измерили его окружность. Мы обнаружили, что шарик "похудел" почти на сантиметр (в нашем опыте он стал 79,7 см). Это произошло из-за того, что воздух внутри шарика сжался и стал занимать меньший объем.

Задание № 2

1 С помощью сантиметровой ленты измерили окружность воздушного шарика (у нас получилось 80,6 см).

2.Кладем шарик в миску и обливаем его горячей водой из банки.

3.Измеряем новый объем шарика. Мы обнаружили, что шарик "потолстел" почти на сантиметр (в нашем опыте он стал 82 см). Это произошло из-за того, что воздух внутри шарика расширился и стал занимать больший объем.

Вывод: воздух, содержавшийся в шарике, при охлаждении сжимается, а при нагревании расширился, что доказывает наличие теплового расширения. Давления газов зависит от температуры. При уменьшении температуры, уменьшается давление воздуха в шарике, т.е. уменьшается объём шарика. При увеличении температуры, увеличивается давление воздуха в шарике, что доказывает зависимость объема и давления газов от температуры.

Эксперимент №3

«Шарик в банке»

Оборудование: шарик, трехлитровая банка, горячая вода.

Ход эксперимента.

1. Наливаем в шарик воду так, чтобы он не проходил в горлышко банки.

2. Наливаем в банку горячую воду, болтаем и выливаем ее. Оставляем банку на 5 минут.

3. Кладем шарик, наполненный водой, на банку. Ждем 20 минут. Шарик падает в банку

Вывод: так как шарик, наполненный водой и больший по диаметру, чем горлышко банки, провалился внутрь, значит, имеет место разница давлений: теплый воздух внутри банки имеет меньшую плотность, чем атмосферный воздух, давление внутри меньше; следовательно, большее атмосферное давление способствует проникновению шарика в банку.

Эксперимент №4

«Воздушный парадокс»

Этот опыт ставит многих в тупик.

Оборудование: два одинаковых воздушных шарика, трубочка длиной 10-30 см и диаметром 15-20 мм (на неё должен туго надеваться шарик). два воздушных шарика, по-разному надутых, трубка из пластика, подставка.

Ход эксперимента.

1. Несильно и НЕ ОДИНАКОВО надуваем шарики.

2. Натягиваем шарики на противоположные концы трубки. Чтобы шарики при этом не сдувались, перекручиваем их горловины.

3. Раскрываем горловины для свободного сообщения воздуха между шариками.

Наблюдение. Воздух перетекает из одного шарика в другой. Но… маленький шарик надувает большой!

Объяснение. Многие считают, что раз масса воздуха больше в шарике большего размера, то этот шарик будет сдуваться и надувать маленький шарик. Но такое рассуждение ошибочно. Причина наблюдаемого явления в давлении внутри шарика. (Вспомним сообщающиеся сосуды - вода перетекает не из того сосуда, где меньше воды, а из того, где давление больше.) Кроме того, все знают, как трудно начинать надувать шарик, но когда «мёртвая» точка преодолена, дальше он надувается легко. Следовательно, и упругость резины играет немаловажную роль.

Вывод: давление газа внутри сферы тем больше, чем меньше ее радиус.

Эксперимент № 5

Шарик - йога

Мы настолько привыкли к тому, что надутый шарик, попав на остриё, с шумом лопается,

что шарик на гвоздях под тяжестью груза воспринимается нами как сверхъестественное явление. Тем не менее это факт.

Оборудование: доска с гвоздями, воздушный шарик, доска, гиря, два штатива.

Ход эксперимента.

1. На доску с гвоздями положить воздушный шарик и надавить его рукой сверху.

2. Надавливаем на шарик предварительно измеренным грузом.

3. Наблюдаем за поведением шарика.

Наблюдения: шарик остается цел. А все дело в площади опоры! Чем больше гвоздей, тем больше точек опоры для тела (т.е. больше площадь поверхности, на которую тело опирается). И вся сила распределяется по всем гвоздям так, что на отдельно взятый гвоздь приходится слишком мало силы для прокола шарика.

Вывод: давление распределяется равномерно по всей поверхности шарика, и до определенного момента давление это для шарика безобидно.

Эксперимент № 6

Индикатор электростатического поля

Информация. Электростатические поля удобно исследовать с помощью индикаторов, позволяющих оценить направление и величину кулоновской силы в каждой точке поля. Простейший точечный индикатор представляет собой лёгкое проводящее тело, подвешенное на нити. Раньше для изготовления лёгкого шарика рекомендовали использовать сердцевину ветки бузины. В настоящее время бузину целесообразно заменить пенопластом. Возможны и другие решения проблемы.

Задание. Разработать конструкцию и изготовить простейший индикатор электростатического поля. Экспериментально определить его чув-ствительность.

Ход эксперимента.

1. Из кусочка резины от детского воздушного шара выдуваем резиновый шарик 1 диаметром 1-2 см. Шарик привяжем к шёлковой нити 2 , которая укреплена к резиновой пробке.

2. Поверхность шарика натираем до характерного металлического блеска графитовым порошком от грифеля мягкого простого карандаша.

3. Шарик зарядили от потёртой мехом эбонитовой палочки.

4. Ввели индикатор в поле сферического заряда и по величине действующей силы оцените чув-ствительность индикатора.

Вывод: маленький резиновый шарик, покрытый проводником является точечным индикатором электрического поля.

Эксперимент № 7

Шарик и кораблик

Оборудование: бумажный кораблик, металлическая пластмассовая крышка,

сосуд с водой.

Ход эксперимента.

1. Делаем бумажный кораблик и пускаем его на воду.

2. Электризуем шарик и подносим к кораблику.

Наблюдение. Кораблик последует за шариком.

3. Опускаем металлическую крышку на воду.

4.Электризуем шарик и подносим к крышке, не касаясь её.

Наблюдение. Металлическая крышка плывёт в сторону шарика.

5. Опускаем на воду пластмассовую крышку.

6. Электризуем шарик и подносим к крышке, не касаясь её.

Наблюдение. Тяжёлая крышка плывёт за шариком.

Вывод: В электрическом поле шарика бумага и пластмасса поляризуются и притягиваются к шарику. В металлической крышке также индуцируется заряд. Поскольку сила трения на воде незначительна, то кораблики легко приходят в движение

Эксперимент № 8

Попрыгунчики

Оборудование: воздушный шарик, мелко нарезанная металлическая фольга, лист картона.

Ход эксперимента.

1. Насыпаем на лист картона мелко нарезанную металлическую фольгу.

2. Электризуем шарик и подносим к фольге, но не касаемся её.

Наблюдение. Блёстки ведут себя как живые кузнечики-попрыгунчики. Подскакивают, касаются шарика и тут же отлетают в сторону.

Вывод: Металлические блёстки электризуются в поле шарика, но при этом остаются нейтральными. Блёстки притягиваются к шарику, подпрыгивают, при касании заряжаются и отскакивают как одноимённо заряженные.

Эксперимент № 9

Воздушный поцелуй по закону Бернулли

Оборудование: 2 воздушных шарика, 2 нитки длинной 1 м.

Ход эксперимента.

1.Надуваем шарики до одинакового размера и привязываем к каждому нитку.

2.Берём шарики за нитку правой и левой рукой так, чтобы они висели на одном уровне на некотором расстоянии друг от друга.

3.Не касаясь шариков руками, попробуйте соединить их.

Объяснение. Из закона Бернулли следует, что давление в струе воздуха ниже, чем атмосферное. Сила атмосферного давления с боков сблизит шарики.

Эксперимент № 10

Испытание на тепловую прочность

Оборудование: шарик и свеча

Ход эксперимента.

Наливаем в шарик воды и вносим шарик с водой в пламя свечи.

Наблюдение. Резина только коптится.

Объяснение. Температура оболочки, пока в ней есть вода, не будет подниматься выше 100 °С, т.е. не достигнет температуры горения резины.

Эксперимент № 11

Как работают лёгкие?

Оборудование: пластиковая бутылка, воздушный шарик №1, воздушный шарик №2 (вместо него я использовал целофановый пакет), скотч.

Ход эксперимента.

1.Отрезаем дно пластиковой бутылки

2.Помещаем воздушный шарик внутрь бутылки и натягиваем его на горлышко.

3.Отрезанную часть затягиваем тлёнкой от другого воздушного шарика (или целофановым пакетом) и закрепить скотчем.

4.Оттягиваем плёнку - шарик надувается, надавливаем на плёнку - шарик сдувается.

Объяснение. Объём воздуха внутри бутылки оказывается изолированным. При оттягивании плёнки этот объём увеличивается, давление уменьшается и становится меньше атмосферного. Шарик внутри бутылки надувается воздухом атмосферы. При надавливании на плёнку объём воздуха в бутылке уменьшается, давление становится больше атмосферного, шарик сдувается. Так же работают и наши лёгкие.

Эксперимент № 12

Воздушный шарик в качестве реактивного двигателя

Оборудование: воздушный шарик, трубочка, канцелярская резинка, скотч, машина.

Ход эксперимента.

1.Воздушный шарик надо закрепить на одном конце трубки при помощи канцелярской резинки.

2. Второй конец трубки надо закрепить на корпусе машинки при помощи скотча так, чтобы была возможность надувать шарик через трубку.

3. Модель готова, можно запускать! Для этого нужно через трубку надуть шарик, зажать пальцем отверстие трубки и поставить машинку на пол. Как только вы откроете отверстие, воздух из шарика станет вылетать и толкать машинку. -12-

Объяснение. Эта наглядная модель демонстрирует принцип работы реактивных двигателей. Принцип ее работы в том, что струя воздуха, вырывающаяся из шарика, после того, как его надули и отпустили, толкает машинку в противоположном направлении.

3.Заключение

На воздушных шариках можно изучать законы давления тел и газов, тепловое расширение (сжатие), теплопроводность, плотность жидкостей и газов, закон Архимеда; электризацию тел можно даже сконструировать приборы для измерения и исследования физических процессов.

Опыты, проведенные в данной исследовательской работе, доказывают, что шарик - отличное пособие для изучения физических явлений и законов. Использовать эту работу можно в школе на уроках при изучении разделов «Первоначальные сведения о строении вещества», «Реактивное движение», «Давление твердых тел, жидкостей и газов», «Тепловые и электрические явления». Собранный исторический материал применим на занятиях кружка по физике и внеклассных мероприятиях.

Созданная на основе практической части компьютерная презентация поможет школьникам быстрее понять сущность изучаемых физических явлений, вызовет большое желание проводить эксперименты с помощью простейшего оборудования.

Очевидно, что наша работа способствует формированию неподдельного интереса к изучению физики.

4.Литература

    www.demaholding.ru

    [Электронный ресурс]. Режим доступа: www.genon.ru

    [Электронный ресурс]. Режим доступа: www.brav-o.ru

    [Электронный ресурс]. Режим доступа: www.vashprazdnik.com

    [Электронный ресурс]. Режим доступа: www.aerostat.biz

    [Электронный ресурс]. Режим доступа: www.sims.ru

    Туркина Г. Физика на воздушных шариках. // Физика. 2008. №16.

Первый закон Ньютона

Вариант 1

2. На столе лежит брусок. Какие силы действуют на него? Почему брусок покоится? Изобразите силы графически.

3. На полу вагона лежит мяч. Поезд трогается, мяч катится при этом по полу вагона. Укажите тело отсчета, относительно кото­рого верен закон инерции, и тело отсчета, относительно которо­го этот закон не выполняется.

Тест 7

Первый закон Ньютона

Вариант 2

2. Парашютист спускается, двигаясь равномерно и прямолинейно. Действие каких сил компенсируется? Сделайте чертеж.

3. С помощью двух одинаковых воздушных шаров поднимают из состояния покоя разные тела. По какому признаку можно за­ключить, у какого из этих тел большая масса?

Тест 7

Первый закон Ньютона

Вариант 3

2. Почему при сплаве леса большое количество бревен выбрасыва­ется на берег на поворотах реки?

3. Лисица, убегая от преследующей ее собаки, часто спасается тем, что делает резкие внезапные движения в сторону как раз в тот момент, когда собака готова схватить ее зубами. Почему собака при этом промахивается?

Тест 7

Первый закон Ньютона

Вариант 4


2. Шарик висит на нити. Какие силы действуют на шарик? Поче­му он покоится? Изобразите силы графически.

3. Почему бегущий человек, стремясь быстро и круто обогнуть столб или дерево, обхватывает его рукой?

Тест 7

Первый закон Ньютона

Вариант 5

1. Назовите тела, действие которых компенсируется в следующих случаях: 1) айсберг плывет в океане; 2) камень лежит на дне ручья; 3) подводная лодка равномерно и прямолинейно дрейфу­ет в толще воды.

2. Что произойдет с бруском и почему, если тележку, на которой он стоит, резко дернуть вперед? Резко остановить?

3. При каком условии пароход, плывущий против течения, будет иметь постоянную скорость?

Тест 7

Первый закон Ньютона

Вариант 6

1. Почему при встряхивании медицинского термометра столбик ртути опускается?

2. Поезд подходит к станции и замедляет свое движение. В каком направлении в это время легче тащить тяжелый ящик по полу вагона: по ходу поезда или в обратную сторону?

3. Какими способами насаживают топор на рукоятку? Как объяс­нить происходящие при этом явления?

Тест 7

Первый закон Ньютона

Вариант 7

1. Назовите тела, действие которых компенсируется в следующих случаях: 1) парашютист спускается на землю равномерно и прямолинейно; 2) аэростат равномерно и прямолинейно подни­мается вверх; 3) аэростат удерживается у земли канатами.

2. К потолку каюты корабля, идущего равномерно и прямолиней­но, подвешен груз. Как будет двигаться груз относительно каю­ты, если корабль будет: увеличивать свою скорость? замедлять ее? повернет влево?

3. Почему с размаху легче расколоть полено топором?

Тест 7

Первый закон Ньютона

Вариант 8

1. Почему груз, сброшенный с транспортного самолета, не падает вниз вертикально?

2. Как можно сбросить каплю чернил с пера, используя инерцию при движении?

3. На книгу, лежащую на столе, поставили утюг. Книга сохраняет состояние покоя несмотря на то, что на нее действует вес утюга. Нет ли здесь противоречия с первым законом Ньютона?

Тест 7

Первый закон Ньютона

Не может. За счет силы трения ее движение замедляется.

Верен относительно Земли и связанных с ней предметов.

Не выполняется относительно вагона и связанных с ним предметов.

1. Ноги человека останавливаются вместе с лодкой, а верхняя часть вследствие закона инерции продолжает движение.

2. Компенсируются сила тяжести и сила сопротивления воздуха.

3. Тело большей массы поднимается медленнее.

Водитель не может сразу оста­новить автомашину вследствие закона инерции.

На поворотах реки бревна продолжают свое прямолинейное движение и выбрасываются на берег.

Лисица резко меняет направление движения, а ее хвост продолжает движение в прежнем направлении. Собака промахивается, бросаясь в сторону хвоста.

Не может. За счет сил трения его движение замедляется.

Шарик покоится, так как действие этих сил скомпенсировано.

Для изменения направления движения необходимо действие какой-то силы, направленной в сторону от направления движения. Такой силой и является сила, с которой дерево действует на человека.

Во всех случаях компенсируются действия Земли и воды.

Если резко дернуть вперед, брусок свалится с тележки назад. Если резко остановить тележку – брусок упадет вперед.

Если собственная скорость парохода будет больше скорости течения и будет направлена противоположно направлению течения.

Термометр резко тормозится, а ртуть в капилляре продолжает движение в силу инерции.

Легче по ходу поезда.

Ударяют молотком по противоположному концу рукоятки. Топор сохраняет состояние покоя, а рукоятка движется в обухе топора.

1. Во всех случаях этими телами являются Земля и воздух.

2. При увеличении скорости груз отклонится в противоположную сторону; при замедлении – отклонится по направлению движения; при повороте влево груз отклонится вправо.

3. При торможении о дерево топор продолжает вследствие инерции двигаться внутри древесины.

1. Груз продолжает по инерции двигаться по направлению движения самолета.

2. Быстро двинуть перо и резко его остановить.

3. Противоречия нет, так как все силы, действующие на книгу скомпенсированы.

Тест 8. Законы Ньютона

Тест 8


Законы Ньютона

Вариант 1

1. Может ли шайба, брошенная хоккеистом, двигаться равномерно по льду? Ответ объяснить.

2. На тело действуют несколько сил. Как направлено ускорение тела, вызванное действием этих сил?

А. По направлению равнодействующей.

Б. По направлению большей из сил.

В. Противоположно направлению равнодействующей.

3. Почему лодка не сдвигается с места, когда человек, находящийся в ней, давит на борт, и приходит в движение, если человек выйдет из лодки и будет толкать ее с такой же силой?

Тест 8

Законы Ньютона

Вариант 2

1. На столе лежит брусок. Какие силы действуют на него? Почему брусок покоится? Изобразите силы графически.

2. Что такое масса тела?

А. Вес тела.

Б. Количество вещества, содержащегося в теле.

В. Мера инертности тела.

Тест 8

Законы Ньютона

Вариант 3

1. На полу вагона лежит мяч. Поезд трогается, мяч катится при этом по полу вагона. Укажите тело отсчета, относительно кото­рого верен закон инерции, и тело отсчета, относительно которо­го этот закон не выполняется.

3 . О ветровое стекло движущегося автомобиля ударился комар. Сравнить силы, действующие на комара и автомобиль во время удара.

Тест 8

Законы Ньютона

Вариант 4

1. Почему стоящему в движущейся лодке человеку трудно сохра­нить прежнее положение, если лодка внезапно останавливается?

2. На тело действует одна сила. Как направлено ускорение, вызванное действием этой силы?

А. Сонаправлено с действующей силой.

Б. Противоположно направлено силе.

В. По линии действия силы, в сторону ее действия.

3. Теплоход при столкновении с лодкой может потопить ее без вся­ких для себя повреждений. Как это согласуется с равенством мо­дулей сил взаимодействия?

Тест 8

Законы Ньютона

Вариант 5

1. Парашютист спускается, двигаясь равномерно и прямолинейно. Действие каких сил компенсируется? Сделайте чертеж.

2. Как зависит ускорение тела от приложенной к нему силы? Какое утверждение неверно?

А. Модуль ускорения прямо пропорционален модулю действующей на тело силы.

Б. Направление ускорения тела совпадает с направлением силы, действующей на это тело.

В. Ускорение тела не зависит от приложенной к нему силы.

3. Можно ли плыть на парусной лодке, направляя на паруса поток воздуха от мощного вентилятора , находящегося на лодке? Что случится, если дуть мимо паруса?

Тест 8

Законы Ньютона

Вариант 6

1. С помощью двух одинаковых воздушных шаров поднимают из состояния покоя разные тела. По какому признаку можно за­ключить, у какого из этих тел большая масса?

2. Равносильны ли формулы

А. Равносильны только формулы 1) и 2).

Б. Все формулы неравносильны.

В. Равносильны все формулы.

Тест 8

Законы Ньютона

Вариант 7

1. Почему нельзя перебегать улицу перед близко идущим транс­портом? В чем причина того, что водитель не может сразу оста­новить автомашину?

2. Вызывает ли постоянная сила постоянное ускорение?

А. Под действием постоянной силы ускорение постепенно увеличивается.

Б. . Под действием постоянной силы ускорение постепенно уменьшается.

В. Под действием постоянной силы тело движется с постоянным ускорением.

Тест 8

Законы Ньютона

Вариант 8

1. Почему при сплаве леса большое количество бревен выбрасыва­ется на берег на поворотах реки?

2. Как измерить массу тела с помощью взвешивания?

А. Произвести измерение при помощи любого динамометра.

Б. Произвести измерение при помощи электронных весов.

В. Проградуировать шкалу пружинных весов, используя в качестве эталона гирю известной массы.

3 . Лежащая на столе книга давит на него с некоторой силой. Стол действует на книгу с такой же силой, направленной вверх. Можно ли найти равнодействующую этих сил?

Тест 8

Законы Ньютона

Вариант 9

1. Лисица, убегая от преследующей ее собаки, часто спасается тем, что делает резкие внезапные движения в сторону как раз в тот момент, когда собака готова схватить ее зубами. Почему собака при этом промахивается?

2. Какая формула определяет второй закон Ньютона?

А. font-size:12.0pt;letter-spacing:-.05pt">Б. font-size:12.0pt;letter-spacing:-.05pt">В.font-size:12.0pt;letter-spacing:-.05pt">3. О ветровое стекло движущегося автомобиля ударился комар. Сравнить силы, действующие на комара и автомобиль во время удара.

Тест 8

Законы Ньютона

Вариант 10

1. Может ли автомобиль двигаться равномерно по горизонтальному шоссе с выключенным двигателем? Ответ объясните.

2. Всегда ли направление движения тела совпадает с направле­нием действующей на тело силы?

А. Да.

Б. Это зависит от массы тела.

В. Нет.

3 . Теплоход при столкновении с лодкой может потопить ее без вся­ких для себя повреждений. Как это согласуется с равенством мо­дулей сил взаимодействия?

Тест 8

Законы Ньютона

Вариант 11

1. Шарик висит на нити. Какие силы действуют на шарик? Поче­му он покоится? Изобразите силы графически.

2. В каких системах отсчета справедлив второй закон Ньютона?

А. Только в неинерциальных системах отсчета.

Б. В любых системах отсчета.

В. Только в инерциальных системах отсчета.

3 . Можно ли плыть на парусной лодке, направляя на паруса поток воздуха от мощного вентилятора, находящегося на лодке? Что случится, если дуть мимо паруса?

Тест 8

Законы Ньютона

Вариант 12

1. Почему бегущий человек, стремясь быстро и круто обогнуть столб или дерево, обхватывает его рукой?

2. Как формулируется второй закон Ньютона?

А. Равнодействующая всех сил, приложенных к телу, равна произведению массы тела на его ускорение.

Б. Сила, приложенная к телу, равна произведению массы тела на его ускорение.

В. Равнодействующая всех сил, приложенных к телу, равна отношению массы тела к его ускорению.

3. Что можно сказать об ускорении, которое получает Земля при взаимодействии с идущим по ней человеком? Ответ обоснуйте.

Тест 8

Законы Ньютона

Вариант 13

1. Назовите тела, действие которых компенсируется в следующих случаях: 1) айсберг плывет в океане; 2) камень лежит на дне ручья; 3) подводная лодка равномерно и прямолинейно дрейфу­ет в толще воды.

2. Как зависит сила тяжести, действующая на тело, от его массы?

А. Сила тяжести, действующая на тело, не зависит от его массы.

Б. Сила тяжести, действующая на тело, обратно пропорциональна его массе.

В. Сила тяжести, действующая на тело, прямо пропорциональна его массе.

3 . Почему лодка не сдвигается с места, когда человек, находящийся в ней, давит на борт, и приходит в движение, если человек выйдет из лодки и будет толкать ее с такой же силой?

Тест 8

Законы Ньютона

Вариант 14

1. Что произойдет с бруском и почему, если тележку, на которой он стоит, резко дернуть вперед? Резко остановить?

2. Как зависит модуль ускорения от модуля силы?

А. Модуль ускорения прямо пропорционален модулю силы.

Б. Модуль ускорения не зависит от модуля силы.

В. Модуль ускорения обратно пропорционален модулю силы.

3. Лежащая на столе книга давит на него с некоторой силой. Стол действует на книгу с такой же силой, направленной вверх. Можно ли найти равнодействующую этих сил?

Тест 8

Законы Ньютона

Вариант 15

1. При каком условии пароход, плывущий против течения, будет иметь постоянную скорость?

2. Как найти равнодействующую?

А. Найти алгебраическую сумму всех действующих на тело сил.

Тема урока: Свободное падение. Движение тела, брошенного вертикально вверх.

Цели урока: дать учащимся представление о свободном падении и движении тела, брошенного вертикально вверх, как частном случае равноускоренного движения, при котором модуль вектора ускорения является постоянной величиной для всех тел. Воспитание внимательности, аккуратности, дисциплинированности, усидчивости. Развитие познавательных интересов, мышления.

Тип урока: комбинированный урок.

Демонстрации: 1. Падение тел в воздухе и разреженном пространстве. 2. Движение тела, брошенного вертикально вверх.

Оборудование: стеклянная трубка длиной 1,5 м, различные тела, доска.

Проверка знаний: самостоятельная работа по теме «Законы Ньютона».

Ход урока:

1. Организационный момент. (1 мин)

2. Проверка знаний. (15 мин)

3. Изложение нового материала. (15 мин)

А) Свободное падение. Ускорение свободного падения.

Б) Зависимость скорости и координаты падающего тела от времени.

Г) Зависимость скорости и координаты тела, брошенного вертикально вверх от времени.

4. Закрепление нового материала. (7 мин)

5. Домашнее задание. (1 мин)

6. Итог урока. (1 мин)

Конспект урока:

1. Приветствие. Проверка присутствующих. Знакомство с темой урока и его целями. Учащиеся записывают дату и тему урока в тетрадях.

2. Самостоятельная работа по теме «Законы Ньютона».

3. Все вы не раз наблюдали падение тел в воздухе и сами подбрасывали предметы вверх. Великий ученый древности Аристотель на основе наблюдений построил теорию, согласно которой чем тяжелее тело, тем быстрее оно падает. Эта теория просуществовала две тысячи лет – ведь камень действительно падает быстрее, чем цветок. Возьмем два тела, легкое и тяжелое, свяжем их вместе и бросим с высоты. Если легкое тело всегда падает медленнее, чем тяжелое, то оно должно притормаживать падении тяжелого тела, и поэтому связка двух тел должна падать медленнее, чем одно тяжелое тело. Но ведь связку можно считать одним телом, более тяжелым, и, значит, связка должна падать быстрее, чем одно тяжелое тело.

Обнаружив это противоречие, Галилей решил проверить на опыте, как же на самом деле будут падать шары разного веса: пусть природа сама даст ответ. Он изготовил шары и сбросил их с Пизанской башни – оба шара упали почти одновременно. Галилей сделал важное открытие: если сопротивлением воздуха можно пренебречь, то все тела, падая, движутся равноускоренно с одним ускорением.

Свободным падением называется движение тел под действием силы тяжести (т.е. в условиях, когда сопротивлением воздуха можно пренебречь).

У учащихся не вызывает сомнений, что свободное падение тела ускоренное движение. Однако является ли это движение равноускоренным, затрудняются ответить. Ответ на этот вопрос может дать эксперимент. Если сделать ряд моментальных снимков падающего шарика через определенные промежутки времени (стробоскопическое фото), то по расстояниям между последовательными положениями шарика можно определить, что движение действительно равноускоренное без начальной скорости (учебник стр. 53, рис 27).

Проведем опыт. Возьмем стеклянную трубку с телами и резко перевернем. Видим, что более тяжелые тела упали быстрее. Затем откачаем воздух из трубки и проведем опыт повторно. Видно, что все тела падают одновременно.

Если рассматривать падение в воздухе тяжелого маленького шарика, то силой сопротивления воздуха можно пренебречь, т.к. равнодействующая сил тяжести и сопротивления мало отличается от силы тяжести. Поэтому шарик движется с ускорением близким к ускорению свободного падения.

Если же рассматривать падение в воздухе кусочка ваты, то такое движение считать свободным нельзя, т.к. сопротивление составляет значительную часть от силы тяжести.

Значит a=g=const= 9,8 м/с2. Следует заметить, что вектор ускорения свободного падения всегда направлен вниз.

Понятие свободного падения имеет широкий смысл: тело совершает свободное падение не только когда его начальная скорость равна нулю. Если тело брошено с начальной скоростью, то оно тоже будет при этом свободно падать. Более того, свободное падение представляет собой не только движение вниз. Если тело при свободном падении некоторое время будет лететь вверх, уменьшая свою скорость, и лишь затем начинает падать.

Заполним вместе следующую таблицу:

Б) Если совместить начало координат с начальными положениями тела и направить ОY вниз, то графики зависимости скорости и координаты падающего тела от времени будут иметь вид: Т.О. при свободном падении скорость тела за каждую секунду увеличивается примерно на 10 м/с.

В) Рассмотрим случаи, когда тело брошено вверх. Совместим начало координат с начальным положением тела и направим OY вертикально вверх. Тогда проекции скорости и перемещения в начале координат будут положительными. На рисунках приведены графики для тела, брошенного со скоростью 30 м/с.

4. Вопросы:

1) Одинаковым ли будет время свободного падения различных тел с одной и той же высоты?

2) Чему равно ускорение свободного падения? Единицы измерения?

3) Чему равно ускорение тела, брошенного вертикально вверх в верхней точке траектории? А скорость?

4) Из одной точки падают без начальной скорости два тела с интервалом времени t. Как движутся эти тела в полете относительно друг друга?

Задачи:1)Камень падал с одной скалы 2 с, а с другой 6 с. Во сколько раз вторая скала выше первой?

Для того, чтобы найти во сколько раз одна скала выше другой, нужно вычислить их высоты (y = g t2/ 2), а потом найти их отношение. Ответ: в 9 раз

2)Тело свободно падает с высоты 80 м. Каково его перемещение в последнюю секунду? Примем высоту h=80 м за время t, высоту h1 за время t-1. ∆ h=h-h1Из уравнения h = g t2/ 2 найдем время t, если h1 = g (t – 1) 2/ 2 Ответ: 35 м.

5. Сегодня на уроке мы рассмотрели частный случай равноускоренного движения - свободное падение и движение тела, брошенного вертикально вверх. Выяснили, что модуль вектора ускорения является постоянной величиной для всех тел, а его вектор направлен всегда вниз. Рассмотрели зависимость скорости и координаты от времени падающего тела и тела, брошенного вертикально вверх.

САМОСТОЯТЕЛЬНАЯ РАБОТА ПО ТЕМЕ ЗАКОНЫ НЬЮТОНА.

НАЧАЛЬНЫЙ УРОВЕНЬ.

1.Тело массой 2 кг движется с ускорением 0,5 м/с2 . Чему равна равнодействующая всех сил? А. 4 Н Б. 0 В. 1 Н

2. Как стала бы двигаться Луна, если бы на нее действие силы тяготения Земли и других тел?

А. Равномерно и прямолинейно по касательной к первоначальной траектории движения.

Б. Прямолинейно по направлению к Земле.

В. Удаляясь от Земли по спирали.

СРЕДНИЙ УРОВЕНЬ.

1.А) На столе лежит брусок. Какие силы действуют на него? Почему брусок покоится? Изобразите силы графически.

Б) Какая сила сообщает телу массой 5 кг ускорение 4 м/с2?

В) Двое мальчиков тянут шнур в противоположные стороны, каждый с силой 200 Н. Разорвется ли шнур, если он может выдержать нагрузку 300 Н?

2.А) Что произойдет с бруском и почему, если на тележку, на которой он стоит, резко дернуть вперед? Резко остановить?

Б) Определите силу, под действием которой тело массой 500 г движется с ускорением 2 м/с2

В) Что можно сказать об ускорении, которое получает Земля при взаимодействии с идущим по ней человеком. Обоснуйте ответ.

ДОСТАТОЧНЫЙ УРОВЕНЬ.

1.А) С помощью двух одинаковых воздушных шаров поднимают из состояния покоя разные тела. По какому признаку можно заключить, у какого тела большая масса?

Б) Под действием силы 150 Н тело движется прямолинейно так, что его координата изменяется по закону х = 100 + 5t + 0,5t2. Какова масса тела?

В) На весах уравновешен неполный стакан с водой. Нарушится ли равновесие весов, если в воду погрузить карандаш и держать его в руке, не касаясь стакана?

2.А) Лисица, убегая от собаки, часто спасается тем, что делает резкие внезапные движения в сторону, когда собака готова схватить ее. Почему собака промахивается?

Б) Лыжник массой 60 кг, имеющий скорость в конце спуска 10 м/с, остановился через 40 с после окончания спуска. Определить модуль силы сопротивления движению.

В) Можно ли плыть на парусной лодке, направляя поток воздуха от мощного вентилятора, находящегося на лодке? Что случится, если дуть мимо паруса?

ВЫСОКИЙ УРОВЕНЬ.

1.А) Система отсчета связана с авто. Будет ли она инерциальной, если авто движется:

1)равномерно прямолинейно по горизонтальному шоссе; 2) ускоренно по горизонтальному шоссе; 3) равномерно поворачивая; 4) равномерно в гору; 5) равномерно с горы; 6) ускоренно с горы.

Б) Покоящееся тело массой 400 г под действием силы 8 Н приобрело скорость 36 км/ч. Найти путь, который прошло тело.

В) Лошадь тянет груженую телегу. По третьему закону Ньютона сила, с которой лошадь тянет телегу = силе, с которой телега тянет лошадь. Почему все-таки телега движется за лошадью?

2.А) Авто равномерно движется по кольцевой дороге. Является ли связанная с ним система отсчета инерциальной?

Б) Тело массой 400 г, двигаясь прямолинейно с начальной скоростью, за 5 с под действием силы 0,6 Н приобрело скорость 10 м/с. Найти начальную скорость тела.

В) Через неподвижный блок перекинута веревка. На одном конце, держась руками, висит человек, а на другом – груз. Вес груза = весу человека. Что произойдет, если человек будет на руках подтягиваться вверх по веревке?

1.Шарик движется под действием постоянной по модулю и направлению силы.Выберите правильное утверждение:
А.Скорость шарика не изменяется.
Б.Шарик движется равномерно.
В.Шарик движется с постоянным ускорением.
2.КАк движется шарик массой 500г. под действием силы 4 Н?
А.С ускорением 2 м/с(в квадрате)

Б.С постоянной скоростью 0,125м/с.
В.С постоянным ускорение 8м/с(в квадрате)
3.В каких приведённых ниже случаев идёт речь о движении тел по инерции?
А.Тело лежит на поверхности стола.
Б.Катер после выключения двигателя продолжает двигаться по повехности воды
В.Спутник движется по орбите вокруг Солнца.

4.а)почему первый закон Ньютона называют законом инерции?
б.как движется тело,если векторная сумма действующих на него сил равна нулю?
в.О векторное стекло движущегося автомибиля ударился комар.Сравните силы,действующие на комара и автомобиль во время удара.
5.а.При каком условии тело может двигаться равномерно и прямолинейно?
б.С помощью двух одинаковых воздушных шаров подминают из состояния покоя разные тела.По какому признаку можно заключить,у какого из этих тел болльшая масса?
в.Мяч ударяет в оконное стекло.На какое из тел(мяч или стекло) действует при ударе большая сила?
7.а.На столе лежит брусок.Какие силы дейчствуют на него?Почему брусок покоится?
б.С каким ускорением движется при разбеге реактивный самолёт ммассой 60 т.,ксли сила тяги двигателей 90 кН?
в.Теплоход при столкновении с лодкой может потопить её без всяких для себя повреждений.Как это согласуется с равенством модулей сил взаимодействия?
8.а.Какими способами насажисают топор на рукоятку?Как объяснить происхождящие при этом явления?
б.Какая сила сообщает телу массой 400г. ускорение 2 м/с(в квадрате)?
в.Двое мальчиков тянут шнур в противоположные стороны,каждый с силой 100Н.Разорвётся ли шнур,если он может выдержать нагрузку 150Н?

Сферическая оболочка воздушного шара сделана из материала,квадратный метр которого имеет массу 1 кг. Шар наполнен гелием при атмосферном давлении 10^5

Па. Определите массу гелия, при котором шар поднимает сам себя. Температура гелия и окружающего воздуха одинакова и равна 0 С. (Площадь сферы S=4пr^2, объем шара V=4/3пr^3)

1)Из уравнений, приведённых ниже, выберите номера тех, которые описывают состояние покоя тела:

1) х = -2+t2 ; 2) х = 5; 3) х = 2/t; 4) х = 2-t; 5) Vx = 5+2t; 6) Vx = 5; 7) Vx = -5- 2t; 8) Vx = -2+t2 ;
3. Какой должна быть длина взлётной полосы, если самолёт для взлёта должен приобрести скорость 240 км/ч, а время разгона равно примерно 30 с?

4. Уравнение движения имеет вид: х = 3 + 2t – 0,1 t2. Определите параметры движения, постройте график Vx (t) и определите путь, пройденный телом за вторую секунду движения.

5. Велосипедист и мотоциклист начинают одновременно движение из состояния покоя. Ускорение мотоциклиста в 2 р больше, чем у велосипедиста. Во сколько раз большую скорость разовьёт мотоциклист за одно и то же время?

6. Дальность полёта тела, брошенного горизонтально со скоростью 20 м/с, равна высоте бросания. С какой высоты сброшено тело?

7. При равномерном движении по окружности тело за 2с проходит 5 м. Каково центростремительное ускорение тела, если период обращения равен 5 с?
ПОМОГИТЕ ЧТО НИБУДЬ РЕШИТЬ

Демонстрация: Нарисовать на полу небольшой круг. Проходя с мячом в руке рядом с ним, нужно на ходу разжать пальцы так, чтобы мяч попал в круг (сложение двух "естественных" движений). Почему это сделать не просто?

Вопросы:

1. Каким способом можно определить, находится данное тело в инерциальной или в неинерциальной системе отсчета?

2. Известно, что тело, свободно движущееся по горизонтальной поверхности, постепенно замедляется и, в конце концов, останавливается. Не противоречит ли этот экспериментальный факт закону инерции?

3. Приведите наибольшее количество примеров проявления инерции.

4. Как объяснить опускание столбика ртути при встряхивании медицинского термометра?

5. На движущийся по прямолинейному горизонтальному пути поезд действует постоянная сила тяги тепловоза, равная силе сопротивления. Какое движение совершает поезд? Как проявляется в данном случае закон инерции?

6. Можно ли с воздушного шара заметить, как вращается под нами земной шар?

7. Как надо прыгать из движущегося вагона?

8. Если окна в купе закрыты, то по каким признакам вы судите о том, что поезд движется?

9. Можно ли установить, наблюдая за движением Солнца в течение суток (дня), является ли система отсчета, связанная с Землей, инерциальной?

IV . § 19. Вопросы к § 19.

Составить обобщающую таблицу "Инерция", используя рисунки, чертежи и текстовый материал.

Количество материи (масса) есть мера таковой, устанавливаемая пропорционально плотности и объему ее…

И.Ньютон

Урок 23/3. УСКОРЕНИЕ ТЕЛ ПРИ ВЗАИМОДЕЙСТВИИ. МАССА.

Цель урока: ввести и развить понятие "масса".

Тип урока: комбинированный.

Оборудование: центробежная машина, стальной и алюминиевый цилиндры, линейка демонстрационная, прибор ЦДЗМ, прибор для демонстрации взаимодействия, гиря массой 2 кг, штатив универсальный, нить.

План урока:

2. Опрос 10 мин.

3. Объяснение 20 мин.

4. Закрепление 10 мин.

5. Задание на дом 2-3 мин.

II . Опрос фундаментальный: 1. Инерциальные системы отсчета. 2. Первый закон Ньютона.

Вопросы:

1. Мальчик держит на нити шарик, наполненный водородом. Какие силы, действующие на шарик, взаимно компенсируется, если он находится в состоянии покоя?

2. Объяснить, действие, каких тел компенсируется в следующих случаях: а) подводная лодка находится в толще воды; б) подводная лодка лежит на твердом дне.

3. Тело покоится в данной ИСО, а какое движение оно совершает в любой другой ИСО?

4. В каком случае систему отсчета, связанную с автомобилем, можно считать инерциальной?

5. В какой системе отсчета выполняется первый закон Ньютона?


6. Каким образом можно убедиться в том, что данное тело не взаимодействует с другими телами?

7. Каким образом с помощью явления инерции опытные водители экономят горючее?

8. Почему находясь в купе поезда с зашторенным окном и хорошей звукоизоляцией, можно обнаружить, что поезд движется ускоренно, но нельзя узнать, что он движется равномерно?

9. Однажды барон Мюнхгаузен, увязнув в болоте, вытащил себя за волосы. Нарушил ли он тем самым первый закон Ньютона?

III . При каких условиях тело движется с ускорением? Демонстрация.

Вывод. Причина изменения скорости тела (ускорения) - некомпенсированное воздействие (влияние) других тел. Примеры: свободное падение шарика, действие магнита на покоящийся и движущийся стальной шарик.

Взаимодействие - воздействие тел друг на друга, приводящее к изменению состояния их движения . Демонстрация с прибором для демонстрации взаимодействия.

Взаимодействие двух тел, не подвергающихся воздействию каких-либо других тел, - самое фундаментальное и самое простое явление, которое мы можем изучать. Демонстрация взаимодействия двух тележек (двух кареток на воздушной подушке).

Вывод: При взаимодействии оба тела изменяют свою скорость, причем их ускорения направлены в противоположные стороны.

Что еще можно сказать об ускорениях тележек при их взаимодействии?

Оказывается, что ускорение тела тем меньше, чем больше масса тела и наоборот (демонстрация).

m 1 a 1 = m 2 a 2

Измерение массы взаимодействующих тел. Эталон массы (цилиндр из сплава платины и иридия) 1 кг. Стандартную массу 1 кг можно получить, взяв 1 л воды при 4 о С и нормальном атмосферном давлении. А как измерить массу отдельного тела?

m э a э = ma .

Определение : Масса (m) свойство тела противодействовать изменению его скорости, измеряемое отношением модуля ускорения эталона массы к модулю ускорения тела при их взаимодействии.

Взаимодействие стального и алюминиевого цилиндров (демонстрация).

Чему будет равно это отношение для двух алюминиевых цилиндров?

Другие способы измерения масс: 1. m = ρ·V (для однородных тел). 2. Взвешивание. Можно ли взвешиванием измерить массу планеты; молекулы; электрона?

Выводы учащихся :

1. В Си масса измеряется в килограммах.

2. Масса является скалярной величиной.

3. Масса обладает свойством аддитивности.

Более глубокий смысл массы в СТО. Связь массы и энергии покоя тела: E = mс 2 . Масса вещества дискретна. Спектр масс. Природа массы - одна из важнейших и еще не решенных задач физики.

IV .Задачи:

1. Мальчики массами 60 и 40 кг, взявшись за руки, обращаются вокруг некоторой точки так, что расстояние между ними равно 120 см. По окружности какого радиуса движется каждый из них?

2. Сравнить ускорения двух стальных шариков во время столкновения, если радиус первого шара в два раза больше радиуса второго. Зависит ли ответ задачи от начальных скоростей шаров?

3. Два мальчика на коньках, оттолкнувшись руками друг от друга, поехали в разные стороны со скоростями 5 и 3 м/с. Масса какого мальчика больше и во сколько раз?

4. На каком расстоянии от центра Земли находится точка, вокруг которой обращаются Земля и Луна, если масса Земли в 81 раз больше массы Луны, а среднее расстояние между их центрами 365000 км.

Вопросы:

1. С помощью двух воздушных одинаковых шаров поднимают из состояния покоя разные тела. По какому признаку можно заключить, у какого из этих тел масса больше?

2. Почему в хоккее защитников выбирают массивнее, а нападающих легче?

3. Почему пожарному трудно удерживать брандспойт, из которого бьет вода?

4. Какое значение у водоплавающих птиц имеют перепончатые лапки?

5. Что является причиной ускорения следующих тел: 1) искусственного спутника при его движении вокруг Земли; 2) искусственного спутника при его торможении в плотных слоях атмосферы; 3) бруска, соскальзывающего с наклонной плоскости; 4) свободно падающего кирпича?

V . § 20-21 Упр. 9, № 1-3. Упр. 10, № 1, 2.

1. Составьте обобщающую таблицу "масса", используя рисунки, чертежи и текстовой материал.

2. Предложите несколько вариантов конструкций приборов, с помощью которых можно сравнивать массы тел при взаимодействии.

3. На лист бумаги поставьте у края стола стакан с водой. Резко выдерните лист в горизонтальном направлении. Что произойдет? Почему? Объясните опыт.

4. Через неподвижный блок перекинута веревка. На одном конце веревки, держась руками, висит человек, а на другом – груз. Вес груза равен весу человека. Что произойдет, если человек будет на руках подтягиваться вверх на веревке?

…приложенная сила - есть действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения.

И.Ньютон

Урок 24/4. СИЛА

Цель урока : развить понятие «сила» и выбрать единицу силы.

Тип урока: комбинированный.

Оборудование: прибор «Тела неравной массы», машина центробежная, штатив, груз, пружина.

План урока: 1. Вступительная часть 1-2 мин.

2. Опрос 15 мин.

3. Объяснение 15 мин.

4. Закрепление 10 мин.

5. Задание на дом 2-3 мин.

II . Опрос фундаментальный: 1. Инертность тел. 2. Масса тел.

Задачи:

1. Вагон массой 60 т подходит к неподвижной платформе со скоростью 0,2 м/с и ударяет буферами, после чего платформа получает скорость 0,4 м/с. Какова масса платформы, если после удара скорость вагона уменьшилась до 0,1 м/с?

2. Два тела массами 400 и 600 г двигались навстречу друг другу и после удара остановились. Какова скорость второго тела, если первое двигалось со скоростью 3 м/с?

3. Экспериментальная задача: Определите отношение масс тел в приборе "Тела неравной массы".

Вопросы:

1. Предложите способ измерения массы Луны.

2. Почему при вбивании гвоздя в тонкую фанеру сзади нее прислоняют топор?

3. Почему трудно ходить по рыхлому снегу (песку)?

4. Эйфелева башня имеет высоту 300 м и массу 9000 т. Какую массу будет иметь ее точная копия высотой 30 см?

5. Электрическая кофемолка представляет собой закрытый цилиндр с электродвигателем. Как определить направление вращения якоря этого электродвигателя, если окошко кофемолки закрыто и, разбирать его нельзя?

III. Взаимодействие двух тел. В результате взаимодействия тела получают ускорения, причем: . Это очень хорошая формула. С ее помощью можно определить массу второго тела, если известна масса первого тела, преобразуем эту формулу: а 1 = а 2 . Из нее следует, что для вычисления ускорения первого тела необходимо знать массу m 1 , а 2 и m 2 . Пример с полетом снаряда. Какие тела действуют на снаряд во время полета? Земля? Воздух? Сопротивлением воздуха можно пренебречь. Что нужно знать артиллеристу, чтобы вычислить ускорение снаряда?

Или = = .

Можно ли измерить влияние второго тела (Земли) на первое тело (снаряд)? Влияние одного тела на другое коротко называют силой ().