Что такое подземная вода: определение, характеристика и виды. Подземные воды: характеристика и виды Запасы грунтовых вод

Классификация

По условиям залегания подземные воды подразделяются на:

  • почвенные;
  • межпластовые;

Почвенные воды заполняют часть промежутков между частицами почвы; они могут быть свободными (гравитационными), перемещающимися под влиянием силы тяжести, или связанными, удерживаемыми молекулярными силами.

Грунто́вые воды образуют водоносный горизонт на первом от поверхности водоупорном слое. В связи с неглубоким залеганием от поверхности уровень грунтовых вод испытывает значительные колебания по сезонам года: он то повышается после выпадения осадков или таяния снега, то понижается в засушливое время. В суровые зимы грунтовые воды могут промерзать. Эти воды в большей мере подвержены загрязнению.

Межпластовые воды - нижележащие водоносные горизонты, заключенные между двумя водоупорными слоями. В отличие от грунтовых, уровень межпластовых вод более постоянен и меньше изменяется во времени. Межпластовые воды более чистые, чем грунтовые. Напорные межпластовые воды полностью заполняют водоносный горизонт и находятся под давлением. Напором обладают все воды, заключенные в слоях, залегающих в вогнутых тектонических структурах.

По условиям движения в водоносных слоях различают подземные воды, циркулирующие в рыхлых (песчаных, гравийных и галечниковых) слоях и в трещиноватых скальных породах.

В зависимости от залегания, характера пустот водовмещающих пород, подземные воды делятся на:

  • поровые - залегают и циркулируют в четвертичных отложениях: в песках , галечниках и др. обломочных породах;
  • трещинные (жильные) - в скальных породах (гранитах , песчаниках);
  • карстовые (трещинно-карстовые) - в растворимых породах (известняках , доломитах , гипсах и др.).

Запасы подземных вод

Подземные воды - часть водных ресурсов Земли ; общие запасы подземных вод составляют свыше 60 млн км³. Подземные воды рассматриваются как полезное ископаемое . В отличие от других видов полезных ископаемых, запасы подземных вод возобновимы в процессе эксплуатации.

Исследование подземных вод

Разведка подземных вод

Для определения наличия подземной воды проводится разведка:

  • бурятся опорные скважины с отбором керна ,
  • изучается керн и определяется относительный геологический возраст пород, их мощность (толщина),
  • проводятся опытные откачки, определяются характеристики водоносного горизонта , оформляется инженерно-геологический отчет;
  • по нескольким опорным скважинам составляются карты, разрезы, проводится предварительная оценка запасов полезных ископаемых (в данном случае, воды);

Происхождение подземных вод

Подземные воды имеют разное происхождение: одни из них образовались в результате проникновения талых и дождевых вод до первого водоупорного горизонта (то есть до глубины 1,5-2,0 м, которые образуют грунтовые воды , то есть так называемая верховодка); другие занимают более глубокие полости в земле.

См. также

Ссылки

  • Учёт влияния грунтовых вод при проектировании фундаментов

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Подземные воды" в других словарях:

    - (a. underground waters; н. Grundwasser; ф. eaux souterraines, eaux de sous sol; и. aguas subterraneas) воды, находящиеся в толщах горн. пород верхней части земной коры в жидком, твёрдом и парообразном состоянии. П. в. являются частью… … Геологическая энциклопедия

    Воды, находящиеся в толщах горных пород верхней части земной коры в жидком, твёрдом и парообразном состоянии. В зависимости от характера пустот водовмещающих пород П. в. делятся на поровые в песках, галечниках и др. обломочных породах,… … Большая советская энциклопедия

    ПОДЗЕМНЫЕ ВОДЫ - воды, в том числе минеральные, находящиеся в подземных водных объектах (Водный Кодекс Российской Федерации) EdwART. Термины и определения по охране окружающей среды, природопользованию и экологической безопасности. Словарь, 2010 … Экологический словарь

    Воды, находящиеся в горных породах верхней части земной коры в жидком, твердом и парообразном состоянии. Различают: свободные (гравитационные, грунтовые воды) и связанные (гигроскопические, пленочные, кристаллизационные); пресные (минерализация… … Словарь черезвычайных ситуаций

    Воды, находящиеся в толщах горных пород верхней части земной коры в жидком, твердом и парообразном состоянии … Большой Энциклопедический словарь

    Все воды, находящиеся ниже поверхности земли и дна поверхностных водоемов и потоков … Геологические термины

    Воды, в том числе минеральные, находящиеся в подземных водных объектах Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

    подземные воды - Вода, находящаяся ниже земной поверхности в толще горных пород и в почве в любых физических состояниях. Syn.: грунтовые воды … Словарь по географии

    ПОДЗЕМНЫЕ ВОДЫ - в водном законодательстве РФ воды, в том числе минеральные, находящиеся в подземных водных объектах … Юридическая энциклопедия

    подземные воды - — EN groundwater Water that occupies pores and crevices in rock and soil, below the surface and above a layer of impermeable material. It is free to move gravitationally, either… … Справочник технического переводчика

Книги

  • Подземные воды Мира: ресурсы, использование, прогнозы , Зекцер И.С.. В монографии анализируется и обобщается опыт различных стран но региональной оценке ресурсов пресных и солоноватых подземных вод, их качества и уязнимости к загрязнению. Рассмотрены основные…

Все воды, находящиеся в толще горных пород в твердом, жидком или газообразном состоянии, называются подземными

На материках они образуют сплошную оболочку, которая не прерывается даже в областях сухих степей и пустынь. Как и поверхностные воды, они находятся в постоянном движении и участвуют в общем круговороте воды в природе. Строительство и эксплуатация большинства наземных сооружений и всех подземных связаны с необходимостью учета движения подземных вод, их состава и состояния. От подземных вод зависят физикомеханические свойства и состояние многих горных пород. Они часто затопляют строительные котлованы, канавы, траншеи и тоннели, а, выходя на поверхность, способствуют заболачиванию территории. Подземные воды могут являться агрессивной средой по отношению к горным породам. Они выступают основной причиной многих физикогеологических процессов, возникающих в естественных условиях, в процессе строительства и эксплуатации инженерных сооружений.

Различают:

Питьевые воды – воды, по своему качеству в естественном состоянии или после обработки отвечающие нормативным требованиям и предназначенные для питьевых и бытовых нужд человека, либо для производства пищевой продукции. Этот тип вод включает также минеральные природные столовые воды, к которым относятся подземные воды с общей минерализацией не более 1 г/дм 3 , не требующие водоподготовки или не изменяющие после водоподготовки своего естественного состава.

Технические подземные воды – воды различного химического состава (от пресных до рассолов), предназначенные для использования в производственно-технических и технологических целях, требования к качеству которых устанавливаются государственными или отраслевыми стандартами, техническими условиями или потребителями.

Подземные воды так же подразделяют:

Подземные воды в основном образуются в результате просачивания (инфильтрации) атмосферных осадков и поверхностных вод в толщу земной коры. Вода проходит через водопроницаемые породы до водоупорного слоя и накапливается на нем, образуя подземный бассейн или поток. Такая подземная вода называется инфильтрационной . Количество инфильтрационной воды зависит от климатических условий местности, рельефа, растительности, состава пород верхней толщи, их структуры и текстуры, а также тектонического строения района. Инфильтрационные подземные воды являются самыми распространенными.

Подземная вода может образовываться также путем конденсации парообразной воды, постоянно циркулирующей в порах горных пород. Конденсационная подземная вода образуется только летом и частично весной и осенью, а зимой не образуется совсем. Конденсацией водяных паров А. Ф. Лебедев объяснял образование значительных запасов подземной воды в зонах пустынь и полупустынь, где количество выпадающих атмосферных осадков ничтожно. Конденсироваться могут не только водяные пары атмосферы, но и водяные пары, выделяющиеся из магматических очагов и других высокотемпературных зон земной коры. Такие подземные воды называются ювенильными.Ювенильные подземные воды обычно сильно минерализованы. В ходе геологического развития в толще земной коры могут сохраняться погребенные водные бассейны. Вода, содержащаяся в осадочных толщах этих бассейнов, называется реликтовой .

Образование подземных вод представляет собой сложный процесс, начинающийся с накопления осадков и тесно связанный с геологической историей района. Очень часто подземные воды различного происхождения перемешиваются между собой, образуя смешанные по происхождению воды.

Верхнюю часть земной коры с точки зрения распространения подземных вод принято делить на две зоны: зону аэрации и зону насыщения. В зоне аэрации не всегда все поры горных пород заполнены водой. Все воды зоны аэрации питаются за счет атмосферных осадков, интенсивно испаряются и поглощаются растениями. Количество воды в этой зоне определяется климатическими условиями. В зоне насыщения, независимо от климатических условий, всегда все поры горных пород заполнены водой. Над зоной насыщения находится подзона капиллярного увлажнения. В этой подзоне тонкие поры заполнены водой, а крупные воздухом.

В зоне аэрации образуются почвенная вода и верховодка. Почвенная вода залегает непосредственно у поверхности земли. Это единственная вода, которая не имеет под собой водоупора и представлена, в основном, связанной и капиллярной водой. Почвенная вода находится в сложной взаимосвязи с животными и растительными организмами. Она отличается резкими колебаниями температуры, наличием микроорганизмов и гумуса. С почвенной водой строители сталкиваются только на заболоченных участках.

Верховодка образуется в зоне аэрации на водонепроницаемых линзах. Верховодкой также называют любые временные скопления воды в зоне аэрации. Атмосферные осадки, проникающие в эту зону, могут временно задерживаться на слабопроницаемых или уплотненных слоях. Чаще всего это происходит весной в период снеготаяния или в период обильных дождей. В засушливые периоды верховодка может исчезать. Характерными особенностями верховодки является непостоянство существования, ограниченность распространения, малая мощность и безнапорность. Верховодка нередко создает затруднения для строителей, так как наличие или возможность ее образования не всегда устанавливается при инженерно геологических изысканиях. Образовавшаяся верховодка может вызывать подтопление инженерных сооружений, заболачивание территорий.

Грунтовой называется вода, залегающая на первом от поверхности земли постоянном водоупорном слое. Грунтовые воды существуют постоянно. Они имеют свободную водную поверхность, называемуюзеркалом грунтовых вод, и водоупорное ложе. Проекция зеркала грунтовых вод на вертикальную плоскость называется уровнем грунтовых вод (У Г В). Расстояние от водоупора до уровня грунтовых вод называется мощностью водоносного горизонта. Уровень грунтовых вод, а, следовательно, и мощность водоносного горизонта - величины непостоянные и могут меняться в течение года в зависимости от климатических условий. Питание грунтовых вод происходит в основном за счет атмосферных и поверхностных вод, но они могут быть и смешанными, инфильтрационно-конденсационными. Участок поверхности земли, с которого поверхностная и атмосферная вода поступает в водоносный горизонт, называется областью питания грунтовых вод. Область питания грунтовых вод всегда совпадает с областью их распространения. Грунтовые воды в силу наличия свободной водной поверхности являются безнапорными, т. е. уровень воды в скважине устанавливается на той же отметке, на которой встречена вода.

В зависимости от условий залегания грунтовых вод различают грунтовые потоки и бассейны. Грунтовые потоки имеют наклонное зеркало и находятся в непрерывном движении в сторону уклона водоупора. Грунтовые бассейны имеют горизонтальное зеркало и встречаются гораздо реже.

Грунтовые воды, находясь в постоянном движении, имеют тесную связь с поверхностными водотоками и водоемами. В районах, где атмосферные осадки преобладают над испарением, грунтовые воды обычно питают реки. В засушливых районах очень часто вода из рек поступает в грунтовые воды, пополняя подземные потоки. Может существовать и смешанный тип связи, когда с одного берега грунтовые воды питают реку, а с другого - вода из реки поступает в грунтовый поток. Характер связи может меняться в зависимости от климатических и некоторых других условий.

При проектировании и строительстве инженерных сооружений необходимо учитывать режим грунтовых вод , т. е. изменение во времени таких показателей, как колебания уровня грунтовых вод, температуры и химического состава. Наибольшим изменениям подвержены уровень и температура грунтовых вод. Причины этих изменений очень разнообразны и нередко непосредственно связаны со строительной деятельностью человека. Климатические факторы вызывают как сезонные, так и многолетние изменения уровня грунтовых вод. Паводки на реках, а также водохранилища, пруды, системы орошения, каналы, дренажные сооружения ведут к изменению режима грунтовых вод.

Положение зеркала грунтовых вод на картах изображается с помощью гидроизогипс и гидроизобат.Гидроизогипсы - линии, соединяющие точки с одинаковыми абсолютными отметками уровня грунтовых вод. Эти линии аналогичны горизонталям рельефа и подобно им отражают рельеф зеркала грунтовых вод. Карта гидроизогипс используется для определения направления движения грунтовых вод и для определения значения гидравлического градиента. Направление движения грунтовых вод всегда перпендикулярно гидроизогипсам от более высоких отметок к более низким. Направления, по которым передвигаются грунтовые воды при установившемся неизменяющемся во времени движении, называются линиями тока. Если линии тока параллельны между собой, то такой поток называется плоским. Поток также может быть сходящимся и расходящимся. Чем меньше расстояние между гидроизогипсами, тем больше гидравлический градиент грунтового потока. Гидроизобаты - линии, соединяющие точки с одинаковой глубиной залегания грунтовых вод.

Межпластовыми подземными водами называются водоносные горизонты, залегающие между двумя водоупорами. Они могут быть ненапорными и напорными. Межпластовые ненапорные воды встречаются редко. По характеру движения они аналогичны грунтовым водам. Межпластовые напорные воды называются артезианскими. Залегание артезианских вод весьма разнообразно, но наиболее часто встречаются синклинальное. Артезианская вода всегда заполняет весь водоносный горизонт от подошвы до кровли и не имеет свободной водной поверхности. Область распространения одного или нескольких уровней артезианских водоносных горизонтов называют артезианским бассейном. Площади артезианских бассейнов огромны и измеряются десятками, сотнями, а иногда и тысячами квадратных километров. В каждом артезианском бассейне различают области питания, распространения и разгрузки. Область питания артезианских бассейнов обычно располагается на больших расстояниях от центра бассейна и на более высоких отметках. Она никогда не совпадает с областью их распространения, которую иногда называют областью напоров. Артезианские воды испытывают гидростатическое давление, обусловленное разностью отметок области питания и области разгрузки, по закону сообщающихся сосудов. Уровень, на котором устанавливается артезианская вода в скважине, называется пьезометрическим. Положение его определяется пьезометрической линией , или линией напоров, условной прямой линией, которая соединяет область питания с областью разгрузки. Если пьезометрическая линия проходит выше поверхности земли, то при вскрытии водоносного горизонта скважинами будет происходить фонтанирование, а напор называется положительным. Когда пьезометрический уровень расположен ниже поверхности земли, то напор называется отрицательным, а вода из скважины не выливается. Артезианские воды, как правило, более минерализованы и меньше связаны с поверхностными водотоками и водоемами, чем грунтовые воды.

Трещинными водами называются подземные воды, приуроченные к трещиноватым магматическим, метаморфическим и осадочным породам. Характер их движения определяется размером и формой трещин. Трещинные воды могут быть ненапорными и напорными. Они непостоянны и могут менять характер движения. Размыв и растворение горных пород приводят к расширению трещин, а кристаллизация солей и накопление осадков - к их сужению. Расход трещинных вод может достигать 500 м 3 /ч. Трещинные воды создают значительные трудности при строительстве подземных сооружений.

Подземные воды в городе

В городах спрос на воду велик, но подземные водные ресурсы ограничены. Во многом процесс восстановления водных ресурсов зависит от состояния самой городской среды, её экологии. Этот немаловажный фактор отвечает не только за объём подземных водных ресурсов, но и за уровень их загрязнения.

В последние годы изучение грунтовых вод городских пространств входит в состав раздела гидрогеологии.

Проблемы, возникающие при взаимодействии грунтовых вод с городской средой это и загрязнение грунтовых вод через сточные трубы канализации, и понижение уровня подземных вод насосными системами, и угроза затопления грунтовыми водами подземных пространств городской среды (например, метро).

Сейчас вопрос о сохранении и защите грунтовых вод от загрязнения стоит особенно остро. Ведь именно от них во многом зависит стабильность развития большинства городов, что выводит проблему на уровень мирового масштаба.

Отталкиваясь от поставленных задач и основываясь на последних достижениях в области гидрогеологии, учёными разрабатываются новые схемы контроля и наблюдения за уровнем загрязнения грунтовых вод, их активностью в пределах подземного пространства городской среды.

И всё же, какую бы важную роль в процессе развития городского пространства не играла его связь с грунтовыми водами, совершенно очевидно, что в данном виде взаимодействия городской среде отведён удел внешнего ограничителя, нежели равноправного участника.

Многие города используют подземную воду, как питьевую. Все знают, что вода - это восполняемый ресурс, но в то же время сильно подверженный влиянию внешних факторов. Очень важно следить за уровнем грунтовых вод и степенью их загрязнения. Для стабильного развития городского пространства этот хрупкий баланс крайне важен. Халатное отношение к водным ресурсам приводит к весьма плачевным последствиям. Например, в Мехико постоянное снижение уровня грунтовых вод привело к просадке грунта, а затем и к экологическим проблемам.

Показатели подземных вод в Российской Федерации

Ресурсный потенциал подземных вод России составляет 869,1 млн. м 3 /сут и распределен по территории неравномерно, что определяется разнообразием геолого-гидрогеологических условий и климатическими особенностями.

На Европейской территории России его величина составляет 346,4 млн. м 3 /сут и изменяется от 74,1 млн. м 3 /сут в Центральном до 117,7 млн. м 3 /сут в Северо-Западном федеральных округах; на Азиатской территории России – 522,7 млн. м 3 /сут и колеблется от 159,2 млн. м 3 /сут в Дальневосточном до 250,9 млн. м 3 /сут в Сибирском федеральных округах.

Современная роль подземных вод в хозяйственно-питьевом водоснабжении населения Российской Федерации характеризуется следующими показателями. Доля подземных вод в балансе хозяйственно-питьевого водоснабжения (из поверхностных и подземных водоисточников) составляет 45%.

Более 60% городов и поселков городского типа удовлетворяют потребности в питьевой воде, используя подземные воды, а около 20% из них имеют смешанные источники водоснабжения.

В сельской местности на подземные воды в хозяйственно-питьевом водоснабжении приходится 80–85% общего водопотребления.

Наиболее сложной проблемой является обеспечение питьевой водой населения крупных городов. Около 35% крупных городов практически не имеют подземных источников централизованного водоснабжения, а для 37 городов вообще отсутствуют разведанные запасы подземных вод.

Степень использования подземных вод в хозяйственно-питьевом водоснабжении населения определяется как закономерностями распределения ресурсов подземных вод по территории России, так и проводимой многие годы политикой обеспечения населения питьевой водой путем приоритетного использования поверхностных вод.

В настоящее время отмечается низкий уровень использования разведанных месторождений подземных вод и их запасов. Средний уровень использования общих разведанных запасов составляет 18–20%, а в пределах эксплуатируемых месторождений с разведанными запасами – 30–32%.

За последние 5 лет прирост оцененных эксплуатационных запасов составил 6,8 млн. м 3 /сут.

Из подземных источников для удовлетворения питьевых нужд населения и водоснабжения объектов промышленности забрано 28,2 млн. м 3 /сут воды. Суммарная величина добычи и извлечения подземных вод составила 33,1 млн. м 3 /сут, без использования сброшено 5,9 млн. м 3 /сут (17,8% общей величины извлечения и добычи подземных вод).

Для хозяйственных нужд использовано 27,2 млн. м 3 /сут, в том числе: на хозяйственно-питьевое водоснабжение 20,6 млн. м 3 /сут (76%); производственно-техническое водоснабжение – 6,0 млн. м 3 /сут (22%); орошение земель и обводнение пастбищ – 0,5 млн. м 3 /сут (2%).

В результате извлечения и добычи подземных вод на отдельных территориях образовались крупные региональные депрессионные воронки, площади которых достигают значительных размеров (до 50 тыс. км 2), а снижение уровня в центре – до 65–130 м (города Брянск, Курск, Москва, Санкт-Петербург).

В г. Брянск региональная депрессионная воронка, образовавшаяся в верхнедевонском водоносном комплексе, имеет радиус более 150 км и понижение уровня более 80 м. Обширные воронки депрессии образовались в районе городов Курск и Железногорск и на Михайловском железорудном карьере. “Курская” депрессионная воронка в баткелловейском водоносном горизонте имеет радиус 90–115 км, снижение уровня в центре – 64,5 м. На Михайловском карьере воронка достигла 60–90 км в радиусе, уровень понизился с начала осушения карьера на 77,4 м.

В Московском регионе интенсивная эксплуатация подземных вод нижнекаменноугольного водоносного комплекса в течение 100 лет привела к формированию обширной глубокой воронки, площадь которой превышает 20 тыс. км 2 , а максимальное понижение уровня – 110 м. Многолетняя эксплуатация подземных вод гдовского водоносного горизонта в Санкт-Петербурге обусловила образование региональной депрессионной воронки общей площадью до 20 тыс. км 2 с понижением уровня до 35 м.

На территории России, по данным государственного мониторинга состояния недр МПР России, выявлено 4002 участка загрязнения, из них более 80% находится в грунтовых водоносных горизонтах, обычно не являющихся источниками питьевого водоснабжения населения.

По экспертным оценкам, в Российской Федерации доля загрязненных подземных вод не превышает 5–6% объема их использования для питьевого водоснабжения населения.

Наибольшее число участков загрязнения подземных вод расположено на территории следующих федеральных округов: Приволжского (30%), Сибирского (23%); Центрального (16%) и Южного (15%). Из общего количества участков загрязнения подземных вод:

§ на 40% загрязнение связано с промышленными предприятиями;

§ на 20% – с сельскохозяйственным производством;

§ на 9% – с жилищно-коммунальным хозяйством,

§ на 4% загрязнение происходит в результате подтягивания некондиционных природных вод при нарушении режима эксплуатации водозаборов;

§ на 10% загрязнение подземных вод “смешанное” и обусловлено деятельностью промышленных, коммунальных и сельскохозяйственных объектов;

§ для 17% участков источник загрязнения подземных вод не установлен.

Наиболее напряженная экологическая обстановка сложилась на участках загрязнения подземных вод веществами I класса опасности. Эти участки выявлены в районах отдельных крупных промышленных предприятий в следующих городах и поселках: Амурск (ртуть), Ачинск (фосфор), Байкальск (ртуть), Георгиевск (ртуть), Ессентуки (ртуть), Екатеринбург (фосфор), Искитим (бериллий), Новокузнецк (фосфор), Казань (бериллий, ртуть), Кисловодск (фосфор), Минеральные Воды (ртуть), Лермонтов (ртуть), Комсомольск-на-Амуре (бериллий), Магнитогорск (тетраэтилсвинец), Новосибирск (бериллий, ртуть), Саянск (ртуть), Свободный (ртуть), Усолье-Сибирское (ртуть), Хабаровск (бериллий, ртуть), Череповец (бериллий) и др.

Наибольшую экологическую опасность представляет загрязнение подземных вод, выявленное в отдельных скважинах на водозаборах питьевого водоснабжения.



Подземные источники воды, в массе своей, считаются стратегическими водными ресурсами.
Водоносные слои, перемещаясь под воздействием собственной тяжести, образовывают безнапорные и напорные горизонты. Условия залегания их различны, что позволяет классифицировать их на виды: почвенные, грунтовые, межпластовые, артезианские, минеральные.

Различия подземной воды

Заполняют собой поры, трещины и все промежутки между частицами породы. Считаются временным скоплением капельных вод в поверхностной толще и не связаны с нижним водоносным горизонтом.

Образуют первый от поверхности водоупорный горизонт. Этот слой испытывает некоторые колебания, в различные сезоны, то есть, повышения уровня в весенне-осенний период и понижения в жаркое время года.

В отличие от грунтовых имеют более постоянный уровень по времени и залегают между двух упорных пластов.

Заполняя весь межпластовый горизонт, источник считается напорным и, значительно, чистым, относительно грунтовых вод.

Считаются напорными, заключенными в пластах горных пород. При вскрытии часто фонтанируют, поднимаясь выше уровня земной поверхности. Залегают на глубине 100-1000 метров.

Представляют собой воды с содержанием растворенных солей и микроэлементов, часто, лечебного характера.

Запасы подземных вод

Запасы почвенной воды напрямую зависят от пополнения их дождевыми и талыми стоками. Периоды изменения их уровня приходятся на весенний - летний и летний - осенний. В первом случае, почвенная влага испаряется на 2-4 мм/сутки, в другом случае на 0,5-2,0 мм/сутки. Их баланс существенно меняется исходя из погодных условий, в результате чего водные ресурсы увеличиваются или уменьшаются. Но, если нет серьезных атмосферных воздействий, запасы их в почвенной толще остаются неизменными. Подсчет же запасов осуществляется эмпирически.

Запасы грунтовой воды пополняются в результате просачивания верхних слоев почвенной влаги, особенно, в сезон выпадения осадков. Перетекая по насыщенным горизонтам, они находят выходы на поверхность в виде родников, пополняя и образуя ручейки, пруды, озера, и прочие наземные источники. Образуются путем инфильтрации речных, озерных вод, за счет атмосферных осадков. Пополняются и источниками, восходящими из глубоких горизонтов. Большие запасы сосредотачиваются в основаниях речных долин и предгорных площадей, трещинах неглубоких окаменевших известняков.

Кстати, есть информация, которая предрекает резкое сокращение запасов пресной воды в 2 раза, ближайшие 25 лет. Если учесть, что общие их запасы составляют 60 млн. км³, а 80 стран планеты уже испытывают дефицит влаги, то плохие предсказания, могут и сбыться.

К великому огорчению землян, запасы воды не возобновляются.

Происхождение подземной воды

Подземные воды, по условиям залегания, состоят из атмосферных осадков и конденсата влаги воздуха. Называются они почвенными или "висячими" и, не будучи подстилающими водоупорными горизонтами, играют важную роль в питании насаждений. Ниже этой зоны проявляются пласты сухих пород, содержащих, так называемую, пленочную воду. В период обильного просачивания дождей, таяния снегов, над сухими пластами образуются скопления гравитационных вод.

Грунтовые воды, будучи первыми от поверхности земли, также питаются атмосферными осадками и наземными источниками. Глубина их залегания зависит от геологических закономерностей.

Межпластовые источники залегают ниже грунтовых и находятся между водоупорными пластами. Горизонты с открытым зеркалом называются безнапорными. Водяная линза с закрытой поверхностью считается напорной и, чаще, называется артезианской.

Таким образом, происхождение подземных вод, во многом зависит и от физических свойств пород. Это могут быть пористость и скважность. Именно эти показатели и характеризуют влагоемкость и водопроницаемость пород.

Итак, две зоны - зона аэрации и насыщения обуславливают залегание подземных источников. Зоной аэрации представляет интервал от плоскости земли до плоскости грунтовых вод, называемых почвенными. К зоне насыщения относится грунтовая жила вплоть до межпластового горизонта.

Водную оболочку Земли — гидросферу — формируют подземные воды, атмосферная влага, ледники и поверхностные водоемы, в том числе океаны, моря, озера, реки, болота. Все воды гидросферы взаимосвязаны между собой и находятся в беспрерывном круговороте.

Основной состав гидросферы — соленые воды. На пресную воду приходится менее 3% всего объема. Цифры условны, так как в расчетах учтены только разведанные запасы. Между тем, по предположениям гидрогеологов, в глубинных слоях Земли находятся колоссальные хранилища подземных вод, месторождения которых еще предстоит открыть.

Подземные воды как часть водных ресурсов планеты

Подземные воды — воды, содержащиеся в водовмещающих осадочных породах, слагающих верхний слой земной коры. В зависимости от окружающих условий, таких как температура, давление, виды горных пород, воды находятся в твердом, жидком или парообразном состоянии. Классификация подземных вод прямым образом зависит от грунтов, слагающих земную кору, их влагоемкости и глубины залегания. Слои водонасыщенных пород носят название «водоносные горизонты».

Водоносные горизонты с пресной водой считаются одним из важнейших стратегических ресурсов.

Характеристики и свойства подземных вод

Различают безнапорные водоносные горизонты, ограниченные пластом водонепроницаемых пород снизу и называемые грунтовыми водами, и напорные, расположенные между двумя водоупорными пластами. Классификация подземных вод по типу водонасыщенных грунтов:

  • поровые, залегающие в песках;
  • трещинные, наполняющие пустоты твердых скальных пород;
  • карстовые, находящиеся в известняках, гипсах и подобных им водорастворимых породах.

Вода, универсальный растворитель, активно поглощает вещества, входящие в состав пород, и насыщается солями и минералами. В зависимости от концентрации растворенных в воде веществ различают пресную, солоноватую, соленую воду и рассолы.

Виды воды в подземной гидросфере

Вода под землей находится в свободном или связанном состоянии. К свободным подземным водам относятся напорные и безнапорные воды, способные перемещаться под действием гравитационных сил. В числе связанных вод:

  • кристаллизационная вода, химически входящая в кристаллическую структуру минералов;
  • гигроскопическая и пленочная вода, физически связанная с поверхностью частичек минералов;
  • вода, находящаяся в твердом состоянии.

Запасы подземных вод

На подземные воды приходится около 2 % от объема всей гидросферы планеты. Под термином «запасы подземных вод» подразумевается:

  • Количество воды, содержащееся в водонасыщенном слое грунта — естественные запасы. Пополнение водоносных горизонтов происходит за счет рек, атмосферных осадков, перетока воды из других водонасыщенных пластов. При оценке запасов подземных вод учитывается среднегодовой объем подземного стока.
  • Объем воды, который может быть использован при вскрытии водоносного горизонта — упругие запасы.

Еще один термин — «ресурсы» — обозначает эксплуатационные запасы подземных вод или объем воды заданного качества, который возможно добыть из водоносного горизонта в единицу времени.

Загрязнение подземных вод

Эксперты классифицируют состав и вид загрязнения подземных вод следующим образом:

Химические загрязнения

Неочищенные жидкие стоки и твердые отходы предприятий индустрии и сельского хозяйства содержат различные органические и неорганические вещества, в том числе тяжелые металлы, нефтепродукты, токсичные ядохимикаты, почвенные удобрения, дорожные реагенты. Химические вещества проникают в водоносные горизонты через грунтовые воды и неправильно изолированные от смежных водонасыщенных пластов скважины. Химические загрязнения подземных вод отличаются широким распространением.

Биологические загрязнения

Неочищенные хозяйственно-бытовые стоки, неисправные канализационные магистрали и поля фильтрации, расположенные вблизи водозаборных скважин, могут стать источниками заражения водоносных горизонтов болезнетворными микроорганизмами. Чем выше фильтрационная способность грунтов, тем медленнее распространяется биологического загрязнение подземных вод.

Решение проблемы загрязнения подземных вод

Учитывая, что причины загрязнения подземных вод носят антропогенный характер, мероприятия по охране подземных водных ресурсов от загрязнения должны включать мониторинг бытовых и промышленных стоков, модернизацию систем очистки и утилизации сточных вод, ограничение сбросов стоков в поверхностные водоемы, создание водоохранных зон, усовершенствование технологий производства.

При оценке свойств подземных вод исследуют вкус, запах, цвет, прозрачность, температуру и другие физические свойства подземной воды, которые характеризуют так называемые органолептические свойства воды (определяемые при помощи органов чувств). Органолептические свойства могут резко ухудшаться при попадании в воду естественным или искусственным путем различных примесей (минеральных взвешенных частиц, органических веществ, некоторых химических элементов).

Температура подземных вод колеблется в широких пределах в зависимости от глубины залегания водоносных слоев, особенностей геологического строения, климатических условий и т. д. Различают воды холодные (температура от 0 до 20 °С), теплые, или субтермальные, воды (20-37 °С), термальные (37-Ю0°С), перегретые (свыше 100 °С). Очень холодные подземные воды циркулируют в зоне многолетней мерзлоты, в высокогорных районах; перегретые воды характерны для районов молодой вулканической деятельности. На участках водозаборов чаще всего температура воды 7-11 °С.

Химически чистая вода бесцветна. Окраску воде придают механические примеси (желтоватая, изумрудная и т. д.). Прозрачность воды зависит от цвета и наличия мути. Вкус связан с составом растворенных веществ: соленый - от хлористого натрия, горький - от сульфата магния и т. д. Запах зависит от наличия газов биохимического происхождения (сероводород и др.) или гниющих органических веществ.

Плотность воды - масса воды, находящаяся в единице ее объема. Максимальная она при температуре 4 °С. При повышении температуры до 250 °С плотность воды уменьшается до 0,799 г/см 3 , а при увеличении количества растворенных в ней солей повышается до 1,4 г/см 3 . Сжимаемость подземных вод характеризуется коэффициентом сжимаемости, показывающим, на какую долю первоначального объема жидкости уменьшается объем при увеличении давления на 10 5 Па. Коэффициент сжимаемости подземных вод составляет 2,5 10 -5 ...5 10~ 5 Па, т. е. вода в некоторой степени обладает упругими свойствами, что важно при изучении напорных подземных вод.

Вязкость воды характеризует внутреннее сопротивление частиц ее движению. С повышением температуры вязкость подземных вод уменьшается.

Электропроводность подземных вод зависит от количества растворенных в них солей и выражается величинами удельных сопротивлений от 0,02 до 1,00 Омм.

Радиоактивность подземных вод вызвана присутствием в ней радиоактивных элементов (урана, стронция, цезия, радия, газообразной эманации радия-радона и др.). Даже ничтожно малые концентрации - сотые и тысячные доли (мг/л) некоторых радиоактивных элементов - могут быть вредными для здоровья человека.

Химический состав подземных вод. Все подземные воды всегда содержат в растворенном состоянии большее или меньшее количество солей, газов, а также органических соединений.

Растворенные в воде газы (0 2 , С0 2 , СН 4 , H 2 S и др.) придают ей определенный вкус и свойства. Количество и тип газов обусловливает степень пригодности воды для питьевых и технических целей. Подземные воды у поверхности земли нередко бывают загрязнены органическими примесями (различные болезнетворные бактерии, органические соединения, поступающие из канализационных систем, и т. д.). Такая вода имеет неприятный вкус и опасна для здоровья людей.

Соли. В подземных водах наибольшее распространение имеют хлориды, сульфаты и карбонаты. По общему содержанию растворенных солей подземные воды разделяют на пресные (до 1 г/л растворенных солей), солоноватые (от 1 до 10 г/л), соленые

(10-50 г/л) и рассолы (более 50 г/л). Количество и состав солей устанавливается химическим анализом. Полученные результаты выражают в виде состава катионов и анионов (в мг/л или мг-экв/л).

В природных условиях общая минерализация подземных вод исключительно разнообразна. Встречаются подземные воды с минерализацией от 0,1 г/л (высокогорные источники) до 500-600 г/л (глубокозалегающие воды Ангаро-Ленского артезианского бассейна). Общая минерализация - один из главных показателей качества подземных вод.

В подземных водах присутствует несколько десятков химических элементов периодической системы Менделеева. До 90 % всех растворенных в водах солей ионы С1~, 80^, НСО3, Иа + ,

М§ 2+ , Са 2+ , К + . Железо, нитриты, нитраты, водород, бром, йод, фтор, бор, радиоактивные и другие элементы содержатся в воде в меньших количествах. Однако даже в небольших количествах они могут оказывать существенное влияние на оценку пригодности подземных вод для различных целей. Наилучшими питьевыми качествами обладают воды при pH = 6,5...8,5.

Количество растворенных солей не должно превышать 1,0 г/л. Не допускается содержание вредных для здоровья человека химических элементов (уран, мышьяк и др.) и болезнетворных бактерий. Последнее в известной мере может быть нейтрализовано обработкой воды ультразвуком, хлорированием, озонированием и кипячением. Органические примеси устанавливаются бактериологическим анализом. Вода для питьевых целей должна быть бесцветна, прозрачна, не иметь запаха, быть приятной на вкус.

Жесткость и агрессивность подземных вод связаны с присутствием солей. Жесткость воды - это свойство, обусловленное содержанием ионов кальция и магния, т. е. связанная с карбонатами, и вычисляется расчетным путем по общему содержанию в воде гидрокарбонатных и карбонатных ионов. Жесткая вода дает большую накипь в паровых котлах, плохо мылится и т. д. В настоящее время жесткость принято выражать количеством миллиграмм-эквивалентов кальция и магния, 1 мг-экв жесткости соответствует содержанию в 1 л воды 20,04 мг иона кальция или 12,6 мг иона магния. В других странах жесткость измеряют в градусах (1 мг-экв = 28°). По жесткости воду разделяют на мягкую (менее 3 мг-экв или 8,4°),

средней жесткости (3-6 мг-экв или 8,4°), жесткую (6-9 мг-экв или 16,8-25,2°) и очень жесткую (более 9 мг-экв или 25,2°). Наилучшим качеством обладает вода с жесткостью не более 7 мг-экв. Жесткость бывает постоянной и временной. Временная жесткость связана с присутствием бикарбонатов и может быть устранена кипячением. Постоянная жесткость , обусловленная серно-кислыми и хлористыми солями, кипячением не устраняется. Сумму временной и постоянной жесткости называют общей жесткостью.

Агрессивность подземных вод выражается в разрушительном воздействии растворенных в воде солей на строительные материалы, в частности, на портландцемент. Поэтому при строительстве фундаментов и различных подземных сооружений необходимо уметь оценивать степень агрессивности подземных вод и определять меры борьбы с ней. В существующих нормах, оценивающих степень агрессивности вод по отношению к бетону, кроме химического состава воды, учитывается коэффициент фильтрации пород. Одна и та же вода может быть агрессивной и неагрессивной. Это обусловлено различием в скорости движения воды - чем она выше, тем больше объемов воды войдет в контакт с поверхностью бетона и, следовательно, значительнее будет агрессивность.

По отношению к бетону различают следующие виды агрессивности подземных вод:

  • общекислотная - оценивается величиной pH, в песках вода считается агрессивной, если pH
  • сульфатная - определяется по содержанию иона; при содержании БО 2- в количестве более 200 мг/л вода становится агрессивной;
  • магнезиальная - устанавливается по содержанию иона 1У^ 2+ ;
  • карбонатная - связанная с воздействием на бетоны агрессивной углекислоты, этот вид агрессивности возможен только в песчаных породах.

Агрессивность подземных вод устанавливают сопоставлением данных химических анализов воды с требованиями нормативов. После этого определяют меры борьбы с ней. Для этого используют специальные цементы, производят гидроизоляцию подземных частей зданий и сооружений, понижают уровень грунтовых вод устройством дренажей и т. д.

Агрессивное действие подземных вод на металлы (коррозия металлов). Подземная вода с растворенными в ней солями и газами может обладать интенсивной коррозионной активностью по отношению к железу и другим металлам. Примером может служить окисление (разъедание) металлических поверхностей с образованием ржавчины под действием кислорода, растворенного в воде:

2?е + 0 2 = 2ГеО 4ГеО + 0 2 = 2Ре 2 0 3 Ре 2 0 3 + ЗН 2 0 = 2Ре(ОН) 3

Подземные воды обладают коррозионными свойствами при содержании в них также агрессивной углекислоты, минеральных и органических кислот, солей тяжелых металлов, сероводорода, хлористых и некоторых других солей. Мягкая вода (с общей жесткостью менее 3,0 мг-экв) действует значительно агрессивнее, чем жесткая. Наибольшему разъеданию могут подвергаться металлические конструкции под влиянием сильнокислых (pH 9,0). Коррозии способствует повышение температуры подземной воды, увеличение скорости ее движениями, электрические поля в грунтовых толщах.

Оценка коррозионной активности вод по отношению к некоторым металлам производится по действующему ГОСТу. После этого, согласно СНиПа, выбирают мероприятия по предотвращению возможной коррозии.

Классификация подземных вод. Существует целый ряд классификаций, но главных из них две. Подземные воды подразделяют: по характеру их использования и по условиям залегания в земной коре (рис. 63). В число первых входят хозяйственно-питьевые воды, технические, промышленные, минеральные, термальные. Ко вторым относят: верховодки, грунтовые и межпластовые воды, а также воды трещин, карста, вечной мерзлоты. В инженерно-геологических целях подземные воды целесообразно классифицировать по гидравлическому признаку - безнапорные и напорные.

Хозяйственно-питьевые воды. Подземные воды широко используют для хозяйственно-питьевых целей. Пресные подземные воды -лучший источник питьевого водоснабжения, поэтому использование их для других целей, как правило, не допускается.

Источником хозяйственно-питьевого водоснабжения являются подземные воды зоны интенсивного водообмена. Глубина залегания пресных подземных вод от поверхности земли обычно не превышает нескольких десятков метров. Однако имеются районы, где они залегают на больших глубинах (300-500 м и более).

В последние годы для хозяйственно-питьевого водоснабжения начинают использовать также солоноватые и соленые подземные воды после их искусственного опреснения.

Технические воды - это воды, которые используют в различных отраслях промышленности и сельского хозяйства. Требова-

Атмосферные

ния к подземным техническим водам отражают специфику того или иного вида производства.

Промышленные воды содержат в растворе полезные элементы (бром, йод и др.) в количестве, имеющем промышленное сырьевое значение. Обычно они залегают в зоне весьма замедленного водообмена, минерализация их высокая (от 20 до 600 г/л), состав хлоридно-натриевый, температура нередко достигает 60-80 °С.

Эксплуатация промышленных вод с целью добычи йода и брома рентабельна лишь при глубине залегания вод не более 3 км, уровне воды в скважине не ниже 200 м, количестве извлекаемой воды в сутки не менее 200 м 3 .

Минеральными называют подземные воды, которые имеют повышенное содержание биологически активных микрокомпонентов, газов, радиоактивных элементов и т. д. Они выходят на поверхность земли источниками или вскрываются буровыми скважинами.

Термальные подземные воды имеют температуру более 37 °С. Они залегают повсеместно на глубинах от нескольких десятков и сотен метров (в горно-складчатых районах) до нескольких километров (на платформах).

По трещинам термальные воды часто выходят на поверхность земли, образуя горячие источники с температурой до 100 °С (Камчатка, Кавказ). Запасы этих вод в земной коре очень большие и их активно используют для теплофикации городов и энергетических целей, например, на Камчатке (Паужетская геотермальная станция). На Земле действует несколько районов активной гейзерной деятельности: Камчатка, Исландия, Северо-Восток США, Новая Зеландия.